Question
Question: If \(z = 1\) and \(z_{1}\) are two non-zero complex numbers such that \(z_{2}\)then arg \(|z_{1} - z...
If z=1 and z1 are two non-zero complex numbers such that z2then arg ∣z1−z2∣arg ≥∣z1∣−∣z2∣ is equal to.
A
≤∣z1∣−∣z2∣
B
≥∣z1∣+∣z2∣
C
≤∣z2∣−∣z1∣
D
0
Answer
0
Explanation
Solution
Let =1+31−3−2i3=4−2−2i3=−21−i23arg(z)=tan−1xy=tan−13=3π=60o.,∵ ar⥂g(z)
180o60o=240o
arg(1+i31−i3)=arg(1−i3)−arg(1+i3)
=−60o−60o=−120o240o
Therefore z=sinα+i(1−cosα)
Thus arg amp(z)=tan−1(sinα1−cosα)=tan−1(2sin2αcos2α2sin22α).
Trick : =tan−1tan(2α)=2αlies on same straight line.
arg(z)