Question
Question: If \[{z_1}\] and \[{z_2}\] are two nonzero complex numbers such that \[\left| {{z_1} + {z_2}}\right|...
If z1 and z2 are two nonzero complex numbers such that ∣z1+z2∣=∣z1∣+∣z2∣. Find the value of argz1−argz2
Solution
We will first assume z1=cosθ1+isinθ1 and z2=cosθ2+isinθ2 where θ1is the argument ofz1 andθ2 is the argument of z2and then put these values in the given condition and find the modulus and then finally find the relation between θ1and θ2.
The modulus of a complex number z=x+iy is given by:-
∣z∣=x2+y2
Complete step-by-step answer:
Let the complex number z1be:-
z1=cosθ1+isinθ1 where θ1is the argument ofz1 θ2 is the argument of z2
And, the complex number z2 be:-
z2=cosθ2+isinθ2where θ2 is the argument of z2
Now according to the question it is given that,
∣z1+z2∣=∣z1∣+∣z2∣
Hence, putting in the respective values we get:-
\Rightarrow$$$\left| {\cos {\theta _1} + i\sin {\theta _1} + \cos {\theta _2} + i\sin {\theta _2}} \right| = \left| {\cos{\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right|$$
Simplifying it further we get:-
\Rightarrow\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}}\right)} \right| = \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta_2}} \right|$$
Now we have to find the modulus of each of the terms on the left hand side as well as the right hand side of the equation.
Now we know that modulus of a complex number $$z = x + iy$$ is given by:-
$$|z| = \sqrt {{x^2} + {y^2}} $$
Hence let us first consider the left hand side:-
Evaluating the modulus of left hand side we get:-
$\Rightarrow\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + i\sin {\theta _2}}\right)} \right| = \sqrt {{{\left( {\cos {\theta _1} + \cos {\theta _2}} \right)}^2} + {{\left( {\sin {\theta _1} +\sin {\theta _2}} \right)}^2}} Applyingthefollowingidentity:−{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2abWeget:−\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + i\sin {\theta _2}}\right)} \right| = \sqrt {{{\cos }^2}{\theta _1} + {{\cos }^2}{\theta _2} + 2\cos {\theta _1}\cos {\theta _2} +{{\sin }^2}{\theta _1} + {{\sin }^2}{\theta _2} + 2\sin {\theta _1}\sin {\theta _2}} Nowusingthefollowingidentity:−{\cos ^2}\theta + {\sin ^2}\theta = 1
We get:-
$\Rightarrow$$$\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + i\sin {\theta _2}}\right)} \right| = \sqrt {2 + 2\cos {\theta _1}\cos {\theta _2} + 2\sin {\theta _1}\sin {\theta _2}}
Taking 2 as common we get:-
\Rightarrow$$$\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + i\sin {\theta _2}}\right)} \right| = \sqrt {2\left( {1 + \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}\right)} $$
Using the following identity:-
$$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$$
We get:-
\Rightarrow\left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + i\sin {\theta _2}}\right)} \right| = \sqrt {2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right)} $$……………………..(1)
Now let us consider right hand side:-
$$RHS = \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}}\right|$$
Now we know that modulus of a complex number $$z = x + iy$$ is given by:-
$$|z| = \sqrt {{x^2} + {y^2}} $$
Hence applying this formula we get:-
$\RightarrowRHS = \sqrt {\left( {{{\cos }^2}{\theta _1} + {{\sin }^2}{\theta _1}} \right)} + \sqrt {\left( {{{\cos}^2}{\theta _2} + {{\sin }^2}{\theta _2}} \right)} Nowusingthefollowingidentity:−{\cos ^2}\theta + {\sin ^2}\theta = 1
We get:-
$\Rightarrow$$$RHS = \sqrt 1 + \sqrt 1
Simplifying it further we get:-
\Rightarrow$$$RHS = 2$$………………….. (2)
Equating equations 1 and 2 we get:-
\Rightarrow\sqrt {2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right)} = 2$$
Squaring both the sides we get:-
$\Rightarrow2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right) = 4
Simplifying it further we get:-
$\Rightarrow$$$1 + \cos \left( {{\theta _1} - {\theta _2}} \right) = 2
Hence, we get:-
\Rightarrow$$$\cos \left( {{\theta _1} - {\theta _2}} \right) = 1$$
Now we know that,
$$\cos 0 = 1$$
Therefore,
\Rightarrow$$${\theta _1} - {\theta _2} = 0Nowsince,{\theta _1}istheargumentof{z_1}and{\theta _2}istheargumentof{z_2}$$
Hence, argz1−argz2=0
Note: Students should take note that the argument of the complex number is the angle measured from the positive real axis to the line segment.
For a complex number z=x+iy
The argument is given by:-
arg(z)=tan−1xy