Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1z_1 and z2z_2 are two non-zero complex numbers such that z1+z2=z1+z2| z_1+ z_2| = | z_1| + | z_2| , then arg(z1)arg(z2)arg (z_1 ) - arg (z_2) is equal to

A

π-\pi

B

π2-\frac{\pi}{2}

C

0

D

π2\frac{\pi}{2}

Answer

0

Explanation

Solution

Given, z1+z2=z1+z2|z_1+z_2|=|z_1|+|z_2| On squaring both sides, we get z12+z22+2z1z2cos(argz1argz2)|z_1|^2+|z_2|^2+2|z_1|z_2|| \, \cos \, (arg \, z_1 -arg \, z_2) \hspace20mm \, =|z_1|^2+|z_2|^2+2|z_1||z_2| 2z1z2cos(argz1argz2)=2z1z2\Rightarrow \, \, \, 2|z_1||z_2| \, \cos \, (arg z_1-arg \, z_2)=2|z_1||z_2| cos(argz1argz2)=1\Rightarrow \, \, \, \, \cos(arg \, z_1 \, - \, arg \, z_2)=1 arg(z1)arg(z2)=0\Rightarrow \, \, \, arg(z_1)-arg(z_2) =0