Solveeit Logo

Question

Question: If \({z_1}\) and \({z_2}\) are two non-zero complex numbers such that \(\left| {{z_1} + {z_2}} \righ...

If z1{z_1} and z2{z_2} are two non-zero complex numbers such that z1+z2=z1+z2\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|, then arg(z1)arg(z2)\arg \left( {{z_1}} \right) - \arg \left( {{z_2}} \right) is equal to
A. π- \pi
B. π2 - \dfrac{\pi }{2}
C. 00
D. π2\dfrac{\pi }{2}
E. π\pi

Explanation

Solution

We will first assume z1=cosθ1+sinθ1{z_1} = \cos {\theta _1} + \sin {\theta _1} and z2=cosθ2+sinθ2{z_2} = \cos {\theta _2} + \sin {\theta _2} where θ1{\theta _1} is the argument of z1{z_1} and θ2{\theta _2} is the argument of z2{z_2}. After that put these values in the given condition and find the modulus and then finally find the relation between θ1{\theta _1} and θ2{\theta _2}.
The modulus of a complex number z=x+iyz = x + iy is given by:
z=x2+y2\left| z \right| = \sqrt {{x^2} + {y^2}}

Complete step-by-step solution:
Let the complex number z1{z_1} be,
z1=cosθ1+sinθ1{z_1} = \cos {\theta _1} + \sin {\theta _1}
where θ1{\theta _1} is the argument of z1{z_1}
Let the complex number z2{z_2} be,
z2=cosθ2+sinθ2{z_2} = \cos {\theta _2} + \sin {\theta _2} where θ2{\theta _2} is the argument of z2{z_2}.
Now according to the question, it is given that,
z1+z2=z1+z2\Rightarrow \left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|
Substitute the values,
cosθ1+isinθ1+cosθ2+isinθ2=cosθ1+isinθ1+cosθ2+isinθ2\Rightarrow \left| {\cos {\theta _1} + i\sin {\theta _1} + \cos {\theta _2} + i\sin {\theta _2}} \right| = \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right|
Simplifying it further we get,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=cosθ1+isinθ1+cosθ2+isinθ2\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right|
Now we have to find the modulus of each of the terms on the left-hand side as well as the right-hand side of the equation.
Now we know that the modulus of a complex number z=x+iyz = x + iy is given by:
z=x2+y2\left| z \right| = \sqrt {{x^2} + {y^2}}
Let us first consider the left-hand side.
Evaluating the modulus of the left-hand side we get,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=(cosθ1+cosθ2)2+(sinθ1+sinθ2)2\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \sqrt {{{\left( {\cos {\theta _1} + \cos {\theta _2}} \right)}^2} + {{\left( {\sin {\theta _1} + \sin {\theta _2}} \right)}^2}}
Simplify the term,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=cos2θ1+cos2θ2+2cosθ1cosθ2+sin2θ1+sin2θ2+2sinθ1sinθ2\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \sqrt {{{\cos }^2}{\theta _1} + {{\cos }^2}{\theta _2} + 2\cos {\theta _1}\cos {\theta _2} + {{\sin }^2}{\theta _1} + {{\sin }^2}{\theta _2} + 2\sin {\theta _1}\sin {\theta _2}}
Now using the following identity,
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Then, we get,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=2+2cosθ1cosθ2+2sinθ1sinθ2\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \sqrt {2 + 2\cos {\theta _1}\cos {\theta _2} + 2\sin {\theta _1}\sin {\theta _2}}
Taking 2 as common we get,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=2(1+cosθ1cosθ2+sinθ1sinθ2)\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \sqrt {2\left( {1 + \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}} \right)}
We know that,
cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
Using the above formula, we get,
(cosθ1+cosθ2)+i(sinθ1+sinθ2)=2(1+cos(θ1θ2))\Rightarrow \left| {\left( {\cos {\theta _1} + \cos {\theta _2}} \right) + i\left( {\sin {\theta _1} + \sin {\theta _2}} \right)} \right| = \sqrt {2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right)}.................….. (1)
Let us first consider the right-hand side.
Evaluating the modulus of the right-hand side we get,
cosθ1+isinθ1+cosθ2+isinθ2=cos2θ1+sin2θ1+cos2θ2+sin2θ2\Rightarrow \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right| = \sqrt {{{\cos }^2}{\theta _1} + {{\sin }^2}{\theta _1}} + \sqrt {{{\cos }^2}{\theta _2} + {{\sin }^2}{\theta _2}}
Now using the following identity,
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Then, we get,
cosθ1+isinθ1+cosθ2+isinθ2=1+1\Rightarrow \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right| = \sqrt 1 + \sqrt 1
Simplify the terms,
cosθ1+isinθ1+cosθ2+isinθ2=2\Rightarrow \left| {\cos {\theta _1} + i\sin {\theta _1}} \right| + \left| {\cos {\theta _2} + i\sin {\theta _2}} \right| = 2................….. (2)
Now, equate the equations (1) and (2),
2(1+cos(θ1θ2))=2\Rightarrow \sqrt {2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right)} = 2
Square on both sides,
2(1+cos(θ1θ2))=4\Rightarrow 2\left( {1 + \cos \left( {{\theta _1} - {\theta _2}} \right)} \right) = 4
Divide both sides by 2,
1+cos(θ1θ2)=2\Rightarrow 1 + \cos \left( {{\theta _1} - {\theta _2}} \right) = 2
Simplify the terms,
cos(θ1θ2)=1\Rightarrow \cos \left( {{\theta _1} - {\theta _2}} \right) = 1
We know that,
cos0=1\cos 0 = 1
Substitute the value in the expression,
θ1θ2=0\Rightarrow {\theta _1} - {\theta _2} = 0
Thus, arg(z1)arg(z2)=0\arg \left( {{z_1}} \right) - \arg \left( {{z_2}} \right) = 0

Hence, option (C) is the correct answer.

Note: Students should take note that the argument of the complex number is the angle measured from the positive real axis to the line segment.
For a complex number, z=x+iyz = x + iy. The argument is given by arg(z)=tan1yx\arg \left( z \right) = {\tan ^{ - 1}}\dfrac{y}{x}.