Question
Question: If \({z_1}\) and \({z_2}\) are two non-zero complex numbers such that \(\left| {{z_1} + {z_2}} \righ...
If z1 and z2 are two non-zero complex numbers such that ∣z1+z2∣=∣z1∣+∣z2∣, then arg(z1)−arg(z2) is equal to
A. −π
B. −2π
C. 0
D. 2π
E. π
Solution
We will first assume z1=cosθ1+sinθ1 and z2=cosθ2+sinθ2 where θ1 is the argument of z1 and θ2 is the argument of z2. After that put these values in the given condition and find the modulus and then finally find the relation between θ1 and θ2.
The modulus of a complex number z=x+iy is given by:
∣z∣=x2+y2
Complete step-by-step solution:
Let the complex number z1 be,
z1=cosθ1+sinθ1
where θ1 is the argument of z1
Let the complex number z2 be,
z2=cosθ2+sinθ2 where θ2 is the argument of z2.
Now according to the question, it is given that,
⇒∣z1+z2∣=∣z1∣+∣z2∣
Substitute the values,
⇒∣cosθ1+isinθ1+cosθ2+isinθ2∣=∣cosθ1+isinθ1∣+∣cosθ2+isinθ2∣
Simplifying it further we get,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=∣cosθ1+isinθ1∣+∣cosθ2+isinθ2∣
Now we have to find the modulus of each of the terms on the left-hand side as well as the right-hand side of the equation.
Now we know that the modulus of a complex number z=x+iy is given by:
∣z∣=x2+y2
Let us first consider the left-hand side.
Evaluating the modulus of the left-hand side we get,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=(cosθ1+cosθ2)2+(sinθ1+sinθ2)2
Simplify the term,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=cos2θ1+cos2θ2+2cosθ1cosθ2+sin2θ1+sin2θ2+2sinθ1sinθ2
Now using the following identity,
sin2θ+cos2θ=1
Then, we get,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=2+2cosθ1cosθ2+2sinθ1sinθ2
Taking 2 as common we get,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=2(1+cosθ1cosθ2+sinθ1sinθ2)
We know that,
cos(A−B)=cosAcosB+sinAsinB
Using the above formula, we get,
⇒∣(cosθ1+cosθ2)+i(sinθ1+sinθ2)∣=2(1+cos(θ1−θ2)).................….. (1)
Let us first consider the right-hand side.
Evaluating the modulus of the right-hand side we get,
⇒∣cosθ1+isinθ1∣+∣cosθ2+isinθ2∣=cos2θ1+sin2θ1+cos2θ2+sin2θ2
Now using the following identity,
sin2θ+cos2θ=1
Then, we get,
⇒∣cosθ1+isinθ1∣+∣cosθ2+isinθ2∣=1+1
Simplify the terms,
⇒∣cosθ1+isinθ1∣+∣cosθ2+isinθ2∣=2................….. (2)
Now, equate the equations (1) and (2),
⇒2(1+cos(θ1−θ2))=2
Square on both sides,
⇒2(1+cos(θ1−θ2))=4
Divide both sides by 2,
⇒1+cos(θ1−θ2)=2
Simplify the terms,
⇒cos(θ1−θ2)=1
We know that,
cos0=1
Substitute the value in the expression,
⇒θ1−θ2=0
Thus, arg(z1)−arg(z2)=0
Hence, option (C) is the correct answer.
Note: Students should take note that the argument of the complex number is the angle measured from the positive real axis to the line segment.
For a complex number, z=x+iy. The argument is given by arg(z)=tan−1xy.