Solveeit Logo

Question

Question: If \({{z}_{1}}\) and \({{z}_{2}}\) are the \(nth\) roots of unity, then \(\arg \left( \dfrac{{{z}_{1...

If z1{{z}_{1}} and z2{{z}_{2}} are the nthnth roots of unity, then arg(z1z2)\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right) is a multiple of
A. nπn\pi
B. 3πn\dfrac{3\pi }{n}
C. 2πn\dfrac{2\pi }{n}
D. None of these.

Explanation

Solution

Hint: To solve this question, we can represent z1=ei2kπn{{z}_{1}}={{e}^{i\dfrac{2k\pi }{n}}} and z2=ei2lπn{{z}_{2}}={{e}^{i\dfrac{2l\pi }{n}}} and then find z1z2\dfrac{{{z}_{1}}}{{{z}_{2}}} in the form of eiθ{{e}^{i\theta }}. After that we can use the fact that arg(z1z2)=θ\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\theta to get the desired result.

Complete step-by-step answer:

In this question, it is given that if z1{{z}_{1}} and z2{{z}_{2}} are the two nthnth roots of unity, then we have to find arg(z1z2)\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right). Here z1{{z}_{1}} and z2{{z}_{2}} are in the form of complex numbers. We can write z1=ei2kπn{{z}_{1}}={{e}^{i\dfrac{2k\pi }{n}}} and z2=ei2lπn{{z}_{2}}={{e}^{i\dfrac{2l\pi }{n}}} as the general form of representing any complex number, that is the nthnth roots of unity is given by, ei2rπn{{e}^{i\dfrac{2r\pi }{n}}}, where r is any integer. So, let us consider z1=ei2kπn{{z}_{1}}={{e}^{i\dfrac{2k\pi }{n}}} and z2=ei2lπn{{z}_{2}}={{e}^{i\dfrac{2l\pi }{n}}}, where k and l are the integers. Now we have to find arg(z1z2)\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right).
We know that, z1=ei2kπn{{z}_{1}}={{e}^{i\dfrac{2k\pi }{n}}} and z2=ei2lπn{{z}_{2}}={{e}^{i\dfrac{2l\pi }{n}}}, so by substituting it in the above, we get,
z1z2=ei(2kπn)ei(2lπn)z1z2=ei2(kl)πn\dfrac{{{z}_{1}}}{{{z}_{2}}}=\dfrac{{{e}^{i\left( \dfrac{2k\pi }{n} \right)}}}{{{e}^{i\left( \dfrac{2l\pi }{n} \right)}}}\Rightarrow \dfrac{{{z}_{1}}}{{{z}_{2}}}={{e}^{i\dfrac{2\left( k-l \right)\pi }{n}}}, by using the fact that, abac=abc\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}.
Now, we will apply the fact that if z=eiθz={{e}^{i\theta }}, then arg(z)=θ\arg \left( z \right)=\theta .
So, if z1z2=ei2(kl)πn\dfrac{{{z}_{1}}}{{{z}_{2}}}={{e}^{i\dfrac{2\left( k-l \right)\pi }{n}}}, then arg(z1z2)=2(kl)πn\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\dfrac{2\left( k-l \right)\pi }{n}.
So, if k as well as l is an integer, then arg(z1z2)\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right) is represented as 2πn×\dfrac{2\pi }{n}\times any integer. So, we can say that the arg(z1z2)\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right) is a multiple of 2πn\dfrac{2\pi }{n}.
Hence, the correct answer is option C.

Note: An argument of a complex number, z=x+iyz=x+iy, denoted by arg(z)\arg \left( z \right) is defined in two equivalent ways:
(i) Geometrically, in a complex plane as the 2-D polar angle ϕ\phi from a positive real axis to the vector representing t. The numeric angle is given by the angle in radius and is positive if measured anticlockwise.
(ii) Algebraically, as any real quantity ϕ\phi such that z=r(cosϕ+sinϕ)=reiϕz=r\left( \cos \phi +\sin \phi \right)=r{{e}^{i\phi }} for some real r, where r is x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}}.