Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1z_1 and z2z_2 are any two complex numbers, then z1+z12z22+z1+z12z22|z_1+\sqrt {z_1^2-z_2^2}|+ |z_1+\sqrt {z_1^2-z_2^2}| is equal to

A

z1|z_1|

B

z2|z_2|

C

z1+z2|z_1+z_2|

D

none of these

Answer

z1+z2|z_1+z_2|

Explanation

Solution

We know that z1+z22z1z22\left|z_{1}+z_{2}\right|^{2}\left|z_{1}-z_{2}\right|^{2} =2[z12+z22(1)=2[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\quad\ldots\left(1\right) Now [z1+z12z22+z1z12z22]2\left[z_{1}+\sqrt{z^{2}_{1}-z^{2}_{2}}+\left|z_{1}-\sqrt{z^{2}_{1}-z^{2}_{2}}\right|\right]^{2} =z1+z12z222+z1z12z222=\left|z_{1}+\sqrt{z^{2}_{1}-z^{2}_{2}}\right|^{2}+\left|z_{1}-\sqrt{z^{2}_{1}-z^{2}_{2}}\right|^{2} +2z12(z12z22)+2\left|z^{2}_{1}-\left(z^{2}_{1}-z^{2}_{2}\right)\right| =2z12+2z12z22+2z22=2\left|z_{1}\right|^{2}+2\left|z_{1}^{2}-z^{2}_{2}\right|+2\left|z^{2}_{2}\right|\quad [By (1)(1)] =2z12+2z22+2z12z22=2|z_1|^2+2|z_2|^2+2|z^2_1-z^2_2| =z1+z22+z1z22+2z1+z2z1z2=|z_1+z_2|^2+|z_1-z_2|^2+2|z_1+z_2| |z_1-z_2| =(z1+z2+z1z2)2= (|z_1 + z_2| + |z_1 - z_2|)^2 Taking square root of both sides, we get z1+z12z22+z1z12z22\left|z_{1}+\sqrt{z^{2}_{1}-z^{2}_{2}}\right|+\left|z_{1}-\sqrt{z^{2}_{1}-z^{2}_{2}}\right| =z1+z2+z1z2=\left|z_{1}+z_{2}\right|+\left|z_{1}-z_{2}\right|