Solveeit Logo

Question

Question: If \[{{z}_{1}}={{a}_{1}}+i{{b}_{1}}\] and \[{{z}_{2}}={{a}_{2}}+i{{b}_{2}}\] are complex numbers suc...

If z1=a1+ib1{{z}_{1}}={{a}_{1}}+i{{b}_{1}} and z2=a2+ib2{{z}_{2}}={{a}_{2}}+i{{b}_{2}} are complex numbers such that z1=1,z2=2\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2 and Re(z1,z2)=0\operatorname{Re}\left( {{z}_{1}},{{z}_{2}} \right)=0, then the pair of complex numbers w1=a1+ia22{{w}_{1}}={{a}_{1}}+\dfrac{i{{a}_{2}}}{2} and w2=2b1+ib2{{w}_{2}}=2{{b}_{1}}+i{{b}_{2}} satisfy
(a) w1=1\left| {{w}_{1}} \right|=1
(b) w2=2\left| {{w}_{2}} \right|=2
(c) Re(w1,w2)=0\operatorname{Re}\left( {{w}_{1}},{{w}_{2}} \right)=0
(d) Im(w1,w2)=0\operatorname{Im}\left( {{w}_{1}},{{w}_{2}} \right)=0

Explanation

Solution

We will first assume z1=cosθ1+sinθ1{{z}_{1}}=\cos {{\theta }_{1}}+\sin {{\theta }_{1}} and z2=cosθ2+sinθ2{{z}_{2}}=\cos {{\theta }_{2}}+\sin {{\theta }_{2}} where θ1{{\theta }_{1}} is the argument of z1{{z}_{1}} and θ2{{\theta }_{2}} is the argument of z2{{z}_{2}}. After that put these values in given condition and find the modulus and then finally find the relation between θ1{{\theta }_{1}} and θ2{{\theta }_{2}}. The modulus of a complex number z=x+iyz=x+iy is given by –
z=x2+y2\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}

Complete step by step answer:
Let the complex number z1{{z}_{1}} be z1=a1+ib1{{z}_{1}}={{a}_{1}}+i{{b}_{1}} and complex number z2{{z}_{2}} be z2=a2+ib2{{z}_{2}}={{a}_{2}}+i{{b}_{2}}.
Since, it is given in question that z1=1,z2=2\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2 and Re(z1,z2)=0\operatorname{Re}\left( {{z}_{1}},{{z}_{2}} \right)=0.
So, let us consider z1=a1+ib1{{z}_{1}}={{a}_{1}}+i{{b}_{1}}
z1=1a1=rcosA,b1=rsinA\left| {{z}_{1}} \right|=1\Rightarrow {{a}_{1}}=r\cos A,{{b}_{1}}=r\sin A
r=z1=1\Rightarrow r=\left| {{z}_{1}} \right|=1
So, we can write it as,
z1=cosA+isinA{{z}_{1}}=\cos A+i\sin A
And z2=a2+ib2{{z}_{2}}={{a}_{2}}+i{{b}_{2}}
z2=2a2=rcosB,b2=rsinB\left| {{z}_{2}} \right|=2\Rightarrow {{a}_{2}}=r\cos B,{{b}_{2}}=r\sin B
r=z2=2\Rightarrow r=\left| {{z}_{2}} \right|=2
So, we can write it as
z2=2cosB+2isinB{{z}_{2}}=2\cos B+2i\sin B
=2(cosB+isinB)=2\left( \cos B+i\sin B \right)
Then, z1.z2=(cosA+isinA)(2cosB+2isinB){{z}_{1}}.{{z}_{2}}=\left( \cos A+i\sin A \right)\left( 2\cos B+2i\sin B \right)
So, Re(z1.z2)=2cosAcosB2sinAsinB\operatorname{Re}\left( {{z}_{1}}.{{z}_{2}} \right)=2\cos A\cos B-2\sin A\sin B
0=2[cos(A+B)]0=2\left[ \cos \left( A+B \right) \right]

& \Rightarrow \cos \left( A+B \right)=0 \\\ & \Rightarrow A+B=\dfrac{\pi }{2} \\\ & \Rightarrow B=\dfrac{\pi }{2}-A \\\ \end{aligned}$$ And $${{z}_{2}}=2\left( \cos \left( \dfrac{\pi }{2}-A \right) \right)+i\sin \left( \dfrac{\pi }{2}-A \right)$$ $$\begin{aligned} & {{z}_{2}}=2\left( \sin A+i\cos A \right) \\\ & {{z}_{1}}=\cos A+i\sin A \\\ \end{aligned}$$ So, we can write $${{w}_{1}}={{a}_{1}}+i\dfrac{{{a}_{1}}}{2}$$ $$=\cos A+\dfrac{i\left( 2\sin A \right)}{2}$$ $${{w}_{1}}=\cos A+i\sin A$$ $$\begin{aligned} & \left| {{w}_{1}} \right|=\sqrt{{{\cos }^{2}}A+{{\sin }^{2}}A} \\\ & \left| {{w}_{1}} \right|=1 \\\ \end{aligned}$$ And similarly, we can write $$\begin{aligned} & {{w}_{2}}=2b+i{{b}_{2}} \\\ & {{w}_{2}}=2\sin A+i\left( 2\cos A \right) \\\ & {{w}_{2}}=2\sin A+2i\cos A \\\ & \left| {{w}_{2}} \right|=2\left| {{w}_{1}} \right| \\\ & \left| {{w}_{2}} \right|=2.1=2 \\\ \end{aligned}$$ Therefore, we can write $$\begin{aligned} & {{w}_{1}}.{{w}_{2}}=\left( \cos A.\left( 2\sin A \right)-2\sin A\cos A \right)+i\left( 2{{\cos }^{2}}A+2{{\sin }^{2}}A \right) \\\ & {{w}_{1}}.{{w}_{2}}=2i\left( 1 \right) \\\ & {{w}_{1}}.{{w}_{2}}=0+2i \\\ & \operatorname{Re}\left( {{w}_{1}}.{{w}_{2}} \right)=0 \\\ \end{aligned}$$ $$\operatorname{Im}\left( {{w}_{1}}.{{w}_{2}} \right)=2$$ **So, the correct answer is “Option d”.** **Note:** Students should not take note that the argument of the complex numbers is the angled measured from the positive real axis to the line segment. For a complex number, $$z=x+iy$$. The argument is given by $$\arg \left( z \right)={{\tan }^{-1}}\dfrac{y}{x}$$.