Question
Question: If \[{{z}_{1}}={{a}_{1}}+i{{b}_{1}}\] and \[{{z}_{2}}={{a}_{2}}+i{{b}_{2}}\] are complex numbers suc...
If z1=a1+ib1 and z2=a2+ib2 are complex numbers such that ∣z1∣=1,∣z2∣=2 and Re(z1,z2)=0, then the pair of complex numbers w1=a1+2ia2 and w2=2b1+ib2 satisfy
(a) ∣w1∣=1
(b) ∣w2∣=2
(c) Re(w1,w2)=0
(d) Im(w1,w2)=0
Solution
We will first assume z1=cosθ1+sinθ1 and z2=cosθ2+sinθ2 where θ1 is the argument of z1 and θ2 is the argument of z2. After that put these values in given condition and find the modulus and then finally find the relation between θ1 and θ2. The modulus of a complex number z=x+iy is given by –
∣z∣=x2+y2
Complete step by step answer:
Let the complex number z1 be z1=a1+ib1 and complex number z2 be z2=a2+ib2.
Since, it is given in question that ∣z1∣=1,∣z2∣=2 and Re(z1,z2)=0.
So, let us consider z1=a1+ib1
∣z1∣=1⇒a1=rcosA,b1=rsinA
⇒r=∣z1∣=1
So, we can write it as,
z1=cosA+isinA
And z2=a2+ib2
∣z2∣=2⇒a2=rcosB,b2=rsinB
⇒r=∣z2∣=2
So, we can write it as
z2=2cosB+2isinB
=2(cosB+isinB)
Then, z1.z2=(cosA+isinA)(2cosB+2isinB)
So, Re(z1.z2)=2cosAcosB−2sinAsinB
0=2[cos(A+B)]