Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1=22(1+i)z_1=2\sqrt2(1+i) and z2=1+i3z_2=1+i\sqrt3 , then z12z23z_1^2\,\,z_2^3 is equal to

A

128i128i

B

64i64i

C

64i-64i

D

128i-128i

Answer

128i-128i

Explanation

Solution

We have z1=22(1+i)z_{1}=2\sqrt{2}\left(1+i\right) z12=8(1+i)28(1+i2+2i)=16iz^{2}_{1}=8\left(1+i\right)^{2}\,8\left(1+i^{2}+2i\right)=16i Also, z2=1+i3z_{2}=1+i\sqrt{3} z23=(1+i3i)3=1+33i3+33i(1+i3)\Rightarrow z^{3}_{2}=\left(1+i\sqrt{3}i\right)^{3}=1+3\sqrt{3}i^{3}+3\sqrt{3}i\left(1+i\sqrt{3}\right) =133i+33i+92=8=1-3\sqrt{3}i+3\sqrt{3}i+9^{2}=-8 So, z12z23=16(8)i=128iz^{2}_{1}z^{3}_{2}=16 \left(-8\right)i=-128i