Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Ifz1=2i,z2=1+i,findz1+z2+1z1z2+1.If \,z_1=2-i,z_2=1+i, find \,|\frac{z_1+z_2+1}{z1-z2+1}|.

Answer

z1=2i,z2=1+iz_1=2-i,z_2=1+i

z1+z2+1z1z2+1=(2i)+(1+i)+1(2i)+(1+i)+1|\frac{z_1+z_2+1}{z1-z2+1}=|\frac{(2-i)+(1+i)+1}{(2-i)+(1+i)+1}

422i=42(1i)|\frac{4}{2-2i}=|\frac{4}{2(1-i)}

=21i×1+i1+i=2(1+i)12i2=|\frac{2}{1-i}×\frac{1+i}{1+i}|=|\frac{2(1+i)}{1^2-i^2}|

=2(1+i)1+i)=\frac{2(1+i)}{1+i)}| [i2=1][i^2=-1]

2(1+i)2|\frac{2(1+i)}{2}|

1+i=12+12=2|1+i|=\sqrt1^2+1^2=\sqrt2

Thus,the value of z1+z2+1z1z2+1]is2|\frac{z_1+z_2+1}{z_1-z_2+1}]\,is\,\sqrt2.