Solveeit Logo

Question

Question: If \( {z_1} = 2 - i \) any \( {z_2} = 1 + i \) , then what is the value of \( \left| {\dfrac{{\left(...

If z1=2i{z_1} = 2 - i any z2=1+i{z_2} = 1 + i , then what is the value of (z1z2+1)(z1+z2i)\left| {\dfrac{{\left( {{z_1} - {z_2} + 1} \right)}}{{\left( {{z_1} + {z_2} - i} \right)}}} \right| ?
A) 53\sqrt {\dfrac{5}{3}}
B) 35\sqrt {\dfrac{3}{5}}
C) 45\sqrt {\dfrac{4}{5}}
D) 54\sqrt {\dfrac{5}{4}}

Explanation

Solution

Hint : In this question we have given two complex numbers z1=2i{z_1} = 2 - i any z2=1+i{z_2} = 1 + i and we have to find the value of (z1z2+1)(z1+z2i)\left| {\dfrac{{\left( {{z_1} - {z_2} + 1} \right)}}{{\left( {{z_1} + {z_2} - i} \right)}}} \right|
The complex number is written in the form of a+iba + ib , where aa and bb are real numbers and ii is iota. In z=a+ibz = a + ib , aa is called the real part and bb is called the imaginary part. To solve this question will put the value of z1{z_1} and z2{z_2} in (z1z2+1)(z1+z2i)\left| {\dfrac{{\left( {{z_1} - {z_2} + 1} \right)}}{{\left( {{z_1} + {z_2} - i} \right)}}} \right| and after that we will find the value of modulus to get the final answer.
Let z=a+ibz = a + ib be a complex number. Then, the modulus of zz , denoted by z\left| z \right| , is defined to be the non-negative real number a2+b2\sqrt {{a^2} + {b^2}} , i.e., z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} .

Complete step-by-step answer :
We have,
(z1z2+1)(z1+z2i)\left| {\dfrac{{\left( {{z_1} - {z_2} + 1} \right)}}{{\left( {{z_1} + {z_2} - i} \right)}}} \right|
Put the value of z1=2i{z_1} = 2 - i and z2=1+i{z_2} = 1 + i .
2i(1+i)+12i+1+ii\Rightarrow \left| {\dfrac{{2 - i - \left( {1 + i} \right) + 1}}{{2 - i + 1 + i - i}}} \right|
Open the bracket and change the sign.
2i1i+12i+1+ii\Rightarrow \left| {\dfrac{{2 - i - 1 - i + 1}}{{2 - i + 1 + i - i}}} \right|
22i3i\Rightarrow \left| {\dfrac{{2 - 2i}}{{3 - i}}} \right|
We can also write it as:
22i3i\Rightarrow \dfrac{{\left| {2 - 2i} \right|}}{{\left| {3 - i} \right|}} …(1)
Now, we will solve 22i\left| {2 - 2i} \right| and 3i\left| {3 - i} \right| separately
22i=22+(2)2\left| {2 - 2i} \right| = \sqrt {{2^2} + {{\left( { - 2} \right)}^2}}
22i=8\left| {2 - 2i} \right| = \sqrt 8
And,
3i=32+(1)2\left| {3 - i} \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}
3i=9+1\left| {3 - i} \right| = \sqrt {9 + 1}
Substitute these values in equation (1)
22i3i=810\dfrac{{\left| {2 - 2i} \right|}}{{\left| {3 - i} \right|}} = \dfrac{{\sqrt 8 }}{{\sqrt {10} }}
We can write it as:
22i3i=4×25×2\dfrac{{\left| {2 - 2i} \right|}}{{\left| {3 - i} \right|}} = \dfrac{{\sqrt {4 \times 2} }}{{\sqrt {5 \times 2} }}
On cancelling 2\sqrt 2 , we get
22i3i=45\therefore \dfrac{{\left| {2 - 2i} \right|}}{{\left| {3 - i} \right|}} = \dfrac{{\sqrt 4 }}{{\sqrt 5 }}
Hence, the correct option is 4.
So, the correct answer is “Option 4”.

Note : As in the above question ii i.e., iota is given, we can’t put the value of ii here because the value of ii is 1\sqrt { - 1} . If we substitute the value of ii here, it will make the question more complex. The distance of the complex number represented as a point in the argand plane (a,ib)\left( {a,ib} \right) is called the modulus of the complex number, so it can’t be negative. Here, modulus plays the most important role. Don’t just remove the modulus, solve the modulus by z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} formula.