Solveeit Logo

Question

Question: If \[{z_0}\] is a root of the equation \[{z^n}\cos {\theta _0} + {z^{n - 1}}\cos {\theta _1} + ... +...

If z0{z_0} is a root of the equation zncosθ0+zn1cosθ1+...+zcosθn1+cosθn=2{z^n}\cos {\theta _0} + {z^{n - 1}}\cos {\theta _1} + ... + z\cos {\theta _{n - 1}} + \cos {\theta _n} = 2 where θR\theta \in R , then

A.z0>1\left| {{z_0}} \right| > 1
B.z0>12\left| {{z_0}} \right| > \dfrac{1}{2}
C.z0>14\left| {{z_0}} \right| > \dfrac{1}{4}
D.z0>32\left| {{z_0}} \right| > \dfrac{3}{2}

Explanation

Solution

Here, we will take modulus on both sides of the given equation. Then, we will use some properties of modulus and convert the equation into an inequality. We will find the range of values of z\left| z \right| which simplify the inequality and choose the correct option accordingly.

Formulas used: We will use the following formulas:
a+ba+b\left| {a + b} \right| \le \left| a \right| + \left| b \right|
ab=ab\left| a \right|\left| b \right| = \left| {ab} \right|

Complete step-by-step answer:
We have the equation,
zncosθ0+zn1cosθ1+...+zcosθn1+cosθn=2{z^n}\cos {\theta _0} + {z^{n - 1}}\cos {\theta _1} + ... + z\cos {\theta _{n - 1}} + \cos {\theta _n} = 2
We need to find zn\left| {{z^n}} \right| , so we will take modulus on both sides. Therefore, we get
zncosθ0+zn1cosθ1+...+zcosθn1+cosθn=2\Rightarrow \left| {{z^n}\cos {\theta _0} + {z^{n - 1}}\cos {\theta _1} + ... + z\cos {\theta _{n - 1}} + \cos {\theta _n}} \right| = \left| 2 \right|
We will use the property a+ba+b\left| {a + b} \right| \le \left| a \right| + \left| b \right| of modulus and simplify the above equation. So, we have
zncosθ0+zn1cosθ1+...+zcosθn1+cosθnzncosθ0+zn1cosθ1+...+zcosθn1+cosθn=2\Rightarrow \left| {{z^n}\cos {\theta _0}} \right| + \left| {{z^{n - 1}}\cos {\theta _1}} \right| + ... + \left| {z\cos {\theta _{n - 1}}} \right| + \left| {\cos {\theta _n}} \right| \ge \left| {{z^n}\cos {\theta _0} + {z^{n - 1}}\cos {\theta _1} + ... + z\cos {\theta _{n - 1}} + \cos {\theta _n}} \right| = 2
zncosθ0+zn1cosθ1+...+zcosθn1+cosθn2\Rightarrow \left| {{z^n}\cos {\theta _0}} \right| + \left| {{z^{n - 1}}\cos {\theta _1}} \right| + ... + \left| {z\cos {\theta _{n - 1}}} \right| + \left| {\cos {\theta _n}} \right| \ge 2
Now using property ab=ab\left| a \right|\left| b \right| = \left| {ab} \right| of modulus and simplifying the above equation, we get
zncosθ0+zn1cosθ1+...+zcosθn1+cosθn2\Rightarrow \left| {{z^n}} \right|\left| {\cos {\theta _0}} \right| + \left| {{z^{n - 1}}} \right|\left| {\cos {\theta _1}} \right| + ... + \left| z \right|\left| {\cos {\theta _{n - 1}}} \right| + \left| {\cos {\theta _n}} \right| \ge 2…………………(1)\left( 1 \right)
We are aware that cosθ\cos \theta has 1 as its maximum value and 1 - 1 as its minimum value.
1cosθ1- 1 \le \cos \theta \le 1
So, modulus of cosθ\cos \theta will always be less than 1:
cosθ1\Rightarrow \left| {\cos \theta } \right| \le 1
If we substitute the maximum value of cosθ\cos \theta in equation (1), the inequality will still hold true.
Substituting 1 for cosθ\cos \theta , we get
zn+zn1+...+z+12\Rightarrow \left| {{z^n}} \right| + \left| {{z^{n - 1}}} \right| + ... + \left| z \right| + 1 \ge 2 ………………………(2)\left( 2 \right)
We can see that the above inequality will hold true if z\left| z \right| is greater than or equal to 1 but we cannot say the same in the case where z\left| z \right| is less than 1 by merely observing. So, we will assume that z<1\left| z \right| < 1 and simplify inequality (2)\left( 2 \right).
Simplifying equation (2)\left( 2 \right), we get
1+z+...+zn1+zn>2\Rightarrow 1 + \left| z \right| + ... + \left| {{z^{n - 1}}} \right| + \left| {{z^n}} \right| > 2
We can see that the terms on the left-hand side are forming a geometric progression with the common ratio as z\left| z \right| .
Substituting 1 for aa and z\left| z \right| for rr in the formula of sum of terms of a G.P , a1r\dfrac{a}{{1 - r}}, we get
11z>2 1>2(1z) 1>22z\begin{array}{l}\dfrac{1}{{1 - \left| z \right|}} > 2\\\ \Rightarrow 1 > 2\left( {1 - \left| z \right|} \right)\\\ \Rightarrow 1 > 2 - 2\left| z \right|\end{array}
Simplifying the inequality, we get
2z>1 z>12\begin{array}{l} \Rightarrow 2\left| z \right| > 1\\\ \Rightarrow \left| z \right| > \dfrac{1}{2}\end{array}
We have found out that inequality (2)\left( 2 \right) will be true for all z>12\left| z \right| > \dfrac{1}{2} .
\therefore Option B is the correct option.

Note: If z>12\left| z \right| > \dfrac{1}{2} , it will also be greater than 1. So, option B covers the range of option A as well but option A does not cover the cases when 12<z1\dfrac{1}{2} < \left| z \right| \le 1 so, option A is incorrect and cannot be chosen.
We know that the sum of terms of a G.P when the common ratio is less than 1 is a1r\dfrac{a}{{1 - r}} where aa is the first term of the G.P. and rr is the common ratio. We might make a mistake by taking the common ratio greater than 1 and using the formula of the sum of terms of a G.P as ar1\dfrac{a}{{r - 1}}. This will give us the wrong sum and hence we will get incorrect answers.