Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

If z ≠ 0 be a complex number such thatz1z=2|z-\frac{1}{z}|=2, then the maximum value of |z| is

A

2\sqrt2

B

1

C

21\sqrt2-1

D

2+1\sqrt2+1

Answer

2+1\sqrt2+1

Explanation

Solution

z1z|z-\frac{1}{z}|≥||z1z|\frac{-1}{z}|

z1z||z|-\frac{1}{|z|}|≤2

Let |z | = r

r1r|r-\frac{1}{r}|≤2

−2≤r1rr-\frac{1}{r}≤2

r1rr-\frac{1}{r}≥−2 and r1rr-\frac{1}{r}≤2

r2r^2+2r–1≥0 and r2r^2–2r–1≤0

r∈[−∞,−1–2\sqrt2]∪[−1+2\sqrt2,∞] and r∈[1−2\sqrt2, 1+2\sqrt2]

Taking intersection r∈[21,2+1\sqrt2-1,\sqrt2+1]
So, the correct option is (D): 2+1\sqrt2+1.