Solveeit Logo

Question

Question: If \(|z| - z = 1 + 2i\)and \(2 - \frac{3}{2}i\)then \(\frac{3}{2} + 2i\) is....

If zz=1+2i|z| - z = 1 + 2iand 232i2 - \frac{3}{2}ithen 32+2i\frac{3}{2} + 2i is.

A

Purely real

B

Purely imaginary

C

Zero

D

Undefined

Answer

Purely imaginary

Explanation

Solution

(z1)arg(z2)=0(z_{1}) - arg(z_{2}) = 0 .....(i)

Now, z1+z2=z1+z2z1,z2|z_{1} + z_{2}| = |z_{1}| + |z_{2}| \Rightarrow z_{1},z_{2}

argz1=argz2argz1argz2=0z=53i\therefore argz_{1} = argz_{2} \Rightarrow argz_{1} - argz_{2} = 0z = 5 - \sqrt{3}i [by equation (i)]

Hence, r(cosθ+isinθ)=53ir(\cos\theta + i\sin\theta) = 5 - \sqrt{3}iis purely imaginary.