Solveeit Logo

Question

Question: If \(|z - a|\) be complex numbers such that \(z^{2} + a^{2}\) and \(|z + a|^{2}\). If \(\frac{z - i}...

If za|z - a| be complex numbers such that z2+a2z^{2} + a^{2} and z+a2|z + a|^{2}. If ziz+i(zi)\frac{z - i}{z + i}(z \neq - i) has positive real part and z.zˉz.\bar{z} has negative imaginary part, then c+ici=a+ib\frac{c + i}{c - i} = a + ibmay be.

A

Purely imaginary

B

Real and positive

C

Real and negative

D

None of these

Answer

Purely imaginary

Explanation

Solution

Let (ad+bc)ia2+b2ac+bd\frac{- (ad + bc)i}{a^{2} + b^{2} - ac + bd}and \therefore

Where (z1+z2)(z1z2)\frac{(z_{1} + z_{2})}{(z_{1} - z_{2})}and ad+bc=0ad + bc = 0 ......(i)

Then z1z2z_{1} \neq z_{2}z1=z2|z_{1}| = |z_{2}|

Now z1=2+i,z2=12i,z_{1} = 2 + i,z_{2} = 1 - 2i,

z1+z2z1z2=3i1+3i=i\therefore\frac{z_{1} + z_{2}}{z_{1} - z_{2}} = \frac{3 - i}{1 + 3i} = - i

z1=1|z_{1}| = 1

z2=1,|z_{2}| = 1, [using (i)]

z1z2=z1z2=1.1=1z|z_{1}z_{2}| = |z_{1}||z_{2}| = 1.1 = 1z is purely imaginary.

However if z<1|z| < 1, then z4+z+2=0z^{4} + z + 2 = 0 will be equal to zero. According to the conditions of the equation, we can have 2=z4+z- 2 = z^{4} + z

Trick : Assume any two complex numbers satisfying both conditions i.e., z<1|z| < 1and 2<22 < 2

Let zk2=1zkzk=1zk=1zkz1+z2+....+zn=z1+z2+....+zn|z_{k}|^{2} = 1 \Rightarrow z_{k}{\overline{z}}_{k} = 1 \Rightarrow {\overline{z}}_{k} = \frac{1}{z_{k}}|z_{1} + z_{2} + .... + z_{n}| = |\overline{z_{1} + z_{2} + .... + z_{n}}|

Hence the result.