Question
Question: If y(x) = xx, x > 0, then y''(2) - 2y'(2) is equal to...
If y(x) = xx, x > 0, then y''(2) - 2y'(2) is equal to
Answer
4(ln2)^2 - 2
Explanation
Solution
Solution Explanation:
- Write y(x)=xx=exlnx.
- Differentiate to find y′(x): y′(x)=exlnx⋅dxd(xlnx)=xx(1+lnx)
- Differentiate to find y′′(x): y′′(x)=dxd[xx(1+lnx)]=xx(1+lnx)2+xx⋅x1=xx[(1+lnx)2+x1]
- Substitute x=2: y′(2)=22(1+ln2)=4(1+ln2) y′′(2)=22[(1+ln2)2+21]=4[(1+ln2)2+21]
- Calculate y′′(2)−2y′(2): y′′(2)−2y′(2)=4[(1+ln2)2+21]−8(1+ln2) Expand and simplify: =4(1+ln2)2+2−8(1+ln2) =4[(ln2)2+2ln2+1]+2−8ln2−8 =4(ln2)2+8ln2+4+2−8ln2−8 =4(ln2)2−2