Solveeit Logo

Question

Question: If y(x) = xx, x > 0, then y''(2) - 2y'(2) is equal to...

If y(x) = xx, x > 0, then y''(2) - 2y'(2) is equal to

Answer

4(ln2)^2 - 2

Explanation

Solution

Solution Explanation:

  1. Write y(x)=xx=exlnxy(x) = x^x = e^{x\ln x}.
  2. Differentiate to find y(x)y'(x): y(x)=exlnxddx(xlnx)=xx(1+lnx)y'(x) = e^{x\ln x} \cdot \frac{d}{dx}(x\ln x) = x^x(1+\ln x)
  3. Differentiate to find y(x)y''(x): y(x)=ddx[xx(1+lnx)]=xx(1+lnx)2+xx1x=xx[(1+lnx)2+1x]y''(x) = \frac{d}{dx}\left[x^x(1+\ln x)\right] = x^x(1+\ln x)^2 + x^x\cdot\frac{1}{x} = x^x\left[(1+\ln x)^2+\frac{1}{x}\right]
  4. Substitute x=2x = 2: y(2)=22(1+ln2)=4(1+ln2)y'(2) = 2^2\,(1+\ln 2) = 4(1+\ln 2) y(2)=22[(1+ln2)2+12]=4[(1+ln2)2+12]y''(2) = 2^2\left[(1+\ln2)^2+\frac{1}{2}\right] = 4\left[(1+\ln2)^2+\frac{1}{2}\right]
  5. Calculate y(2)2y(2)y''(2) - 2y'(2): y(2)2y(2)=4[(1+ln2)2+12]8(1+ln2)y''(2) - 2y'(2) = 4\left[(1+\ln2)^2+\frac{1}{2}\right] - 8(1+\ln2) Expand and simplify: =4(1+ln2)2+28(1+ln2)= 4(1+\ln2)^2 + 2 - 8(1+\ln2) =4[(ln2)2+2ln2+1]+28ln28= 4\left[(\ln2)^2 + 2\ln2 + 1\right] + 2 - 8\ln2 - 8 =4(ln2)2+8ln2+4+28ln28= 4(\ln2)^2 + 8\ln2 + 4 + 2 - 8\ln2 - 8 =4(ln2)22= 4(\ln2)^2 - 2