Solveeit Logo

Question

Question: If y(x) is the solution of the differential equation $\frac{dy}{dx} = -2x(y-1)$ with y(0) = 1, then ...

If y(x) is the solution of the differential equation dydx=2x(y1)\frac{dy}{dx} = -2x(y-1) with y(0) = 1, then find the limxy(x)\lim_{x \to \infty} y(x).

Answer

1

Explanation

Solution

The given differential equation is dydx=2x(y1)\frac{dy}{dx} = -2x(y-1). This is a first-order separable differential equation.

  1. Separate variables: dyy1=2xdx\frac{dy}{y-1} = -2x dx

  2. Integrate both sides: dyy1=2xdx\int \frac{dy}{y-1} = \int -2x dx lny1=x2+C\ln|y-1| = -x^2 + C

  3. Solve for y: y1=ex2+C=eCex2|y-1| = e^{-x^2+C} = e^C e^{-x^2} Let A=±eCA = \pm e^C. Then, we have: y1=Aex2y-1 = A e^{-x^2} y(x)=1+Aex2y(x) = 1 + A e^{-x^2}

  4. Apply the initial condition y(0)=1y(0) = 1: Substitute x=0x=0 and y=1y=1: 1=1+Ae021 = 1 + A e^{-0^2} 1=1+A1 = 1 + A A=0A = 0

  5. Write the particular solution: Substituting A=0A=0 into the general solution, we get: y(x)=1+0ex2=1y(x) = 1 + 0 \cdot e^{-x^2} = 1

  6. Find the limit as xx \to \infty: limxy(x)=limx1=1\lim_{x \to \infty} y(x) = \lim_{x \to \infty} 1 = 1

The given differential equation is separable. After separating variables and integrating, we obtain lny1=x2+C\ln|y-1| = -x^2 + C. Exponentiating both sides yields y1=Aex2y-1 = A e^{-x^2}. Using the initial condition y(0)=1y(0)=1, we find the constant A=0A=0. This means the particular solution is y(x)=1y(x)=1. The limit of y(x)y(x) as xx \to \infty is therefore limx1=1\lim_{x \to \infty} 1 = 1.