Solveeit Logo

Question

Question: If \(y^{3} + y + 2 = 0\) and \(y^{3} - y^{2} - y - 2 = 0\) are the roots of the equation \(y^{3} + 3...

If y3+y+2=0y^{3} + y + 2 = 0 and y3y2y2=0y^{3} - y^{2} - y - 2 = 0 are the roots of the equation y3+3y2y3=0y^{3} + 3y^{2} - y - 3 = 0 and y3+4y2+5y+20=0y^{3} + 4y^{2} + 5y + 20 = 0, then 2x33x2+6x+1=02x^{3} - 3x^{2} + 6x + 1 = 0

A

–8

B

–16

C

16

D

8

Answer

–16

Explanation

Solution

x2+px+q=0\mathbf{x}^{\mathbf{2}}\mathbf{+ px + q = 0} …..(i)

2+32 + \sqrt{3} …..(ii)

and given 3\sqrt{3} …..(iii)

Solving (i) and (iii), we get 2,3- 2, - \sqrt{3}

Substituting these values in (ii), we get ax2+bx+c=0ax^{2} + bx + c = 0.