Solveeit Logo

Question

Question: If $y^2(y^2-6)+x^2-8x+24=0$ and the minimum value of $x^2+y^4$ is $m$ and maximum value is $M$, then...

If y2(y26)+x28x+24=0y^2(y^2-6)+x^2-8x+24=0 and the minimum value of x2+y4x^2+y^4 is mm and maximum value is MM, then find the value of M6m\frac{M}{6m}

Answer

38\frac{3}{8}

Explanation

Solution

Solution:

We start with the given equation:

y2(y26)+x28x+24=0.y^2(y^2-6)+x^2-8x+24=0.

Let u=y2u = y^2; then the equation becomes:

u(u6)+x28x+24=0u26u+x28x+24=0.u(u-6) + x^2-8x+24 = 0 \quad \Longrightarrow \quad u^2 - 6u + x^2-8x+24 = 0.

Complete the square in xx:

x28x=(x4)216,x^2-8x = (x-4)^2 - 16,

which gives:

u26u+(x4)216+24=0u26u+(x4)2+8=0.u^2-6u+(x-4)^2 - 16+24=0 \quad \Longrightarrow \quad u^2-6u+(x-4)^2+8=0.

Next, complete the square in uu:

u26u=(u3)29.u^2-6u = (u-3)^2-9.

Thus, we have:

(u3)29+(x4)2+8=0(u3)2+(x4)2=1.(u-3)^2-9+(x-4)^2+8=0 \quad \Longrightarrow \quad (u-3)^2+(x-4)^2=1.

This represents a circle centered at (4,3)(4, 3) in the (x,u)(x, u)-plane with radius 1.

We need to optimize:

x2+y4=x2+u2.x^2+y^4 = x^2+u^2.

Shift coordinates by setting:

X=x4,V=u3.X = x-4, \quad V = u-3.

Then the constraint becomes:

X2+V2=1,X^2+V^2=1,

and

x=X+4,u=V+3.x = X+4,\quad u = V+3.

So the objective function is:

x2+u2=(X+4)2+(V+3)2=X2+8X+16+V2+6V+9.x^2+u^2 = (X+4)^2+(V+3)^2 = X^2+8X+16 + V^2+6V+9.

Since X2+V2=1X^2+V^2=1, we obtain:

x2+u2=1+8X+6V+25=26+8X+6V.x^2+u^2 = 1+8X+6V+25 = 26+8X+6V.

Now, to maximize or minimize 26+8X+6V26+8X+6V subject to X2+V2=1X^2+V^2=1, note that the extreme values occur when the linear term 8X+6V8X+6V is maximized or minimized, which is a dot-product with the vector (8,6)(8,6). The maximum value is:

max(8X+6V)=82+62=10,\max(8X+6V) = \sqrt{8^2+6^2} = 10,

and the minimum is 10-10. Thus:

Maximum=26+10=36,Minimum=2610=16.\text{Maximum} = 26+10 = 36,\quad \text{Minimum} = 26-10 = 16.

Given m=16m = 16 and M=36M = 36, the desired value is:

M6m=366×16=3696=38.\frac{M}{6m} = \frac{36}{6\times 16} = \frac{36}{96} = \frac{3}{8}.

Final Answer: 38\frac{3}{8}


Core Explanation:

  1. Substitute u=y2u=y^2 and complete the squares to transform the equation into a circle: (x4)2+(u3)2=1(x-4)^2+(u-3)^2=1.
  2. Change variables: X=x4X = x-4 and V=u3V = u-3.
  3. Express x2+y4=(X+4)2+(V+3)2x^2+y^4 = (X+4)^2+(V+3)^2 which simplifies to 26+8X+6V26+8X+6V.
  4. The extrema on the unit circle are obtained by dot product leading to values 36 (max) and 16 (min), thereby 366×16=38\frac{36}{6\times 16}=\frac{3}{8}.