Solveeit Logo

Question

Question: If $y^{1/4} + y^{-1/4} = 2x$, and $(x^2 - 1)\frac{d^2y}{dx^2} + \alpha x \frac{dy}{dx} + \beta y = 0...

If y1/4+y1/4=2xy^{1/4} + y^{-1/4} = 2x, and (x21)d2ydx2+αxdydx+βy=0(x^2 - 1)\frac{d^2y}{dx^2} + \alpha x \frac{dy}{dx} + \beta y = 0, then αβ|\alpha - \beta| is equal to ____.

Answer

17

Explanation

Solution

Let t=y1/4t = y^{1/4}. Then y=t4y = t^4. The given equation y1/4+y1/4=2xy^{1/4} + y^{-1/4} = 2x becomes t+1t=2xt + \frac{1}{t} = 2x. Differentiating t+1t=2xt + \frac{1}{t} = 2x with respect to xx: dtdx1t2dtdx=2\frac{dt}{dx} - \frac{1}{t^2}\frac{dt}{dx} = 2 dtdx(11t2)=2\frac{dt}{dx}\left(1 - \frac{1}{t^2}\right) = 2 dtdx(t21t2)=2\frac{dt}{dx}\left(\frac{t^2-1}{t^2}\right) = 2 dtdx=2t2t21\frac{dt}{dx} = \frac{2t^2}{t^2-1}.

Now we find the derivatives of yy with respect to xx: dydx=dydtdtdx=4t32t2t21=8t5t21\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = 4t^3 \cdot \frac{2t^2}{t^2-1} = \frac{8t^5}{t^2-1}.

Differentiating dydx\frac{dy}{dx} with respect to xx: d2ydx2=ddx(8t5t21)=ddt(8t5t21)dtdx\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{8t^5}{t^2-1}\right) = \frac{d}{dt}\left(\frac{8t^5}{t^2-1}\right)\frac{dt}{dx} ddt(8t5t21)=85t4(t21)t5(2t)(t21)2=85t65t42t6(t21)2=83t65t4(t21)2=8t4(3t25)(t21)2\frac{d}{dt}\left(\frac{8t^5}{t^2-1}\right) = 8 \frac{5t^4(t^2-1) - t^5(2t)}{(t^2-1)^2} = 8 \frac{5t^6 - 5t^4 - 2t^6}{(t^2-1)^2} = 8 \frac{3t^6 - 5t^4}{(t^2-1)^2} = \frac{8t^4(3t^2-5)}{(t^2-1)^2}. So, d2ydx2=8t4(3t25)(t21)22t2t21=16t6(3t25)(t21)3\frac{d^2y}{dx^2} = \frac{8t^4(3t^2-5)}{(t^2-1)^2} \cdot \frac{2t^2}{t^2-1} = \frac{16t^6(3t^2-5)}{(t^2-1)^3}.

From t+1t=2xt + \frac{1}{t} = 2x, we have x=t2+12tx = \frac{t^2+1}{2t}. Then x21=(t2+12t)21=(t2+1)24t24t2=t4+2t2+14t24t2=t42t2+14t2=(t21)24t2x^2-1 = \left(\frac{t^2+1}{2t}\right)^2 - 1 = \frac{(t^2+1)^2 - 4t^2}{4t^2} = \frac{t^4+2t^2+1-4t^2}{4t^2} = \frac{t^4-2t^2+1}{4t^2} = \frac{(t^2-1)^2}{4t^2}.

Substitute these into the given differential equation (x21)d2ydx2+αxdydx+βy=0(x^2 - 1)\frac{d^2y}{dx^2} + \alpha x \frac{dy}{dx} + \beta y = 0: ((t21)24t2)(16t6(3t25)(t21)3)+α(t2+12t)(8t5t21)+βt4=0\left(\frac{(t^2-1)^2}{4t^2}\right) \left(\frac{16t^6(3t^2-5)}{(t^2-1)^3}\right) + \alpha \left(\frac{t^2+1}{2t}\right) \left(\frac{8t^5}{t^2-1}\right) + \beta t^4 = 0. 4t4(3t25)t21+4αt4(t2+1)t21+βt4=0\frac{4t^4(3t^2-5)}{t^2-1} + \frac{4\alpha t^4(t^2+1)}{t^2-1} + \beta t^4 = 0. Divide by t4t^4: 4(3t25)t21+4α(t2+1)t21+β=0\frac{4(3t^2-5)}{t^2-1} + \frac{4\alpha(t^2+1)}{t^2-1} + \beta = 0. Multiply by t21t^2-1: 4(3t25)+4α(t2+1)+β(t21)=04(3t^2-5) + 4\alpha(t^2+1) + \beta(t^2-1) = 0. 12t220+4αt2+4α+βt2β=012t^2 - 20 + 4\alpha t^2 + 4\alpha + \beta t^2 - \beta = 0. (12+4α+β)t2+(20+4αβ)=0(12 + 4\alpha + \beta)t^2 + (-20 + 4\alpha - \beta) = 0. For this to hold for all tt, the coefficients must be zero:

  1. 12+4α+β=012 + 4\alpha + \beta = 0
  2. 20+4αβ=0-20 + 4\alpha - \beta = 0 Adding (1) and (2): 8α8=0    α=18\alpha - 8 = 0 \implies \alpha = 1. Substituting α=1\alpha=1 into (1): 12+4(1)+β=0    16+β=0    β=1612 + 4(1) + \beta = 0 \implies 16 + \beta = 0 \implies \beta = -16. αβ=1(16)=1+16=17|\alpha - \beta| = |1 - (-16)| = |1 + 16| = 17.