Question
Mathematics Question on Differential equations
If y=y(x),x∈(0,2π) be the solution curve of the differential equation(sin22x)dxdy+(8sin22x+2sin4x)y =2e−4x(2sin2x+cos2x), with y(4π)=e−π, then y(6π) is equal to:
A
32e−32π
B
32e32π
C
31e−32π
D
31e32π
Answer
32e−32π
Explanation
Solution
The correct answer is (A) : 32e−32π
Given differential equation
dxdy+(8+4cot2x)y=sin22x2e−4x(2sin2x+cos2x)
I.F=∫e(8+4cot2x)dy=e8x+2loge(sin2x)=e8x.sin22x
Solution is
y(e8x.sin22x)=∫2e4x(2sin2x+cos2x)dx+C
∴y(x)=sin2xe−4x
∴y(6π)=sin(2.6π)e−46π
=32e−32π