Solveeit Logo

Question

Mathematics Question on Differential equations

If y=y(x),x(0,π2)y = y ( x ), x \in\left(0, \frac{\pi}{2}\right) be the solution curve of the differential equation(sin22x)dydx+(8sin22x+2sin4x)y \left(\sin ^2 2 x\right) \frac{d y}{d x}+\left(8 \sin ^2 2 x+2 \sin 4 x\right) y =2e4x(2sin2x+cos2x), with y(π4)=eπ, =2 e^{-4 x}(2 \sin 2 x+\cos 2 x), \text { with } y\left(\frac{\pi}{4}\right)=e^{-\pi}, then y(π6)y\left(\frac{\pi}{6}\right) is equal to:

A

23e2π3\frac{2}{\sqrt{3}} e ^{-\frac{2 \pi }{ 3}}

B

23e2π3\frac{2}{\sqrt{3}} e ^{\frac{2 \pi }{ 3}}

C

13e2π3\frac{1}{\sqrt{3}} e ^{-\frac{2 \pi }{ 3}}

D

13e2π3\frac{1}{\sqrt{3}} e ^{\frac{2 \pi }{ 3}}

Answer

23e2π3\frac{2}{\sqrt{3}} e ^{-\frac{2 \pi }{ 3}}

Explanation

Solution

The correct answer is (A) : 23e2π3\frac{2}{\sqrt3}e^{-\frac{2\pi}{3}}
Given differential equation
dydx+(8+4cot2x)y=2e4xsin22x(2sin2x+cos2x)\frac{dy}{dx}+(8+4\cot2x)y=\frac{2e^{-4x}}{\sin^22x}(2\sin2x+\cos2x)
I.F=e(8+4cot2x)dy=e8x+2loge(sin2x)=e8x.sin22xI.F=\int_{e}(8+4\cot2x)dy=e^{8x+2log_e(\sin2x)}=e^{8x}.\sin^22x
Solution is
y(e8x.sin22x)=2e4x(2sin2x+cos2x)dx+Cy(e^{8x}.\sin^22x)=\int2e^{4x}(2\sin2x+\cos2x)dx+C
y(x)=e4xsin2x\therefore y(x)=\frac{e^{-4x}}{\sin2x}
y(π6)=e4π6sin(2.π6)\therefore y(\frac{\pi}{6})=\frac{e^{-4\frac{\pi}{6}}}{\sin(2.\frac{\pi}{6})}
=23e2π3=\frac{2}{\sqrt3}e^{-\frac{2\pi}{3}}