Solveeit Logo

Question

Mathematics Question on Differential Equations

If y=y(x)y = y(x) is the solution of the differential equation dydx+2y=sin(2x),y(0)=34,\frac{dy}{dx} + 2y = \sin(2x), \quad y(0) = \frac{3}{4},then y(π8)y\left(\frac{\pi}{8}\right) is equal to:

A

eπ/8e^{-\pi/8}

B

eπ/4e^{-\pi/4}

C

eπ/4e^{\pi/4}

D

eπ/8e^{\pi/8}

Answer

eπ/4e^{-\pi/4}

Explanation

Solution

Given differential equation:

dydx+2y=sin(2x),y(0)=34\frac{dy}{dx} + 2y = \sin(2x), \quad y(0) = \frac{3}{4}

The integrating factor (I.F) is:

I.F=e2dx=e2x\text{I.F} = e^{\int 2dx} = e^{2x}

Multiplying through by the integrating factor:

ye2x=e2xsin(2x)dxye^{2x} = \int e^{2x} \sin(2x) \, dx

To solve the integral, we use integration by parts:

ye2x=e2x(2sin2x2cos2x4+4)+Cye^{2x} = e^{2x} \left( \frac{2 \sin 2x - 2 \cos 2x}{4 + 4} \right) + C

ye2x=e2x(sin2xcos2x4)+Cye^{2x} = e^{2x} \left( \frac{\sin 2x - \cos 2x}{4} \right) + C

Using the initial condition y(0)=34y(0) = \frac{3}{4}:

34=(14(02))+C\frac{3}{4} = \left( \frac{1}{4} (0 - 2) \right) + C

34=14+C    C=1\frac{3}{4} = -\frac{1}{4} + C \implies C = 1

Thus, the solution is:

y=sin2xcos2x8+e2xy = \frac{\sin 2x - \cos 2x}{8} + e^{-2x}

To find y(π8)y\left(\frac{\pi}{8}\right):

y(π8)=18(2sinπ42cosπ4)+eπ/4y\left(\frac{\pi}{8}\right) = \frac{1}{8} \left( 2 \sin \frac{\pi}{4} - 2 \cos \frac{\pi}{4} \right) + e^{-\pi/4}

Since sinπ4=cosπ4=22\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}: y(π8)=0+eπ/4=eπ/4y\left(\frac{\pi}{8}\right) = 0 + e^{-\pi/4} = e^{-\pi/4}