Solveeit Logo

Question

Mathematics Question on Differential equations

If y = y(x) is the solution of the differential equation

2x2dydx2xy+3y2=02x^2\frac{dy}{dx}-2xy+3y^2=0 such that y(e)=e3,y(e)=\frac{e}{3},

then y(1) is equal to

A

B

C

3/2

D

3

Answer

Explanation

Solution

The correct option is(B): 23\frac{2}{3}.

2x2dydx2xy+3y2=02x^2\frac{dy}{dx}-2xy+3y^2=0

2x(xdyydx)+3y2dx=0⇒2x(xdy-ydx)+3y^2dx=0

2(xdyydxy2)+3dxx=0⇒2(\frac{xdy-ydx}{y^2})+3\frac{dx}{x}=0

y(e)=e36+3=cc=3∵y(e)=\frac{e}{3}⇒-6+3=c⇒c=-3

Now,at

x=1,2y+0=3x=1,-\frac{2}{y}+0=-3

y=23y=\frac{2}{3}