Question
Mathematics Question on Differential equations
If y = y(x) is the solution of the differential equation
x dxdy +2y= xex,y(1)=0
then the local maximum value of the function
z(x)=x2y(x)−ex,x∈R
is
A
1 - e
B
0
C
21
D
e4−e
Answer
e4−e
Explanation
Solution
The correct answer is (D) : e4−e
xdxdy+2y=xex,y(1)=0
\frac{dy}{dx} + \frac{2}{x} y = e^x , then$$e^{\int\frac{2}{x} dx} dx = x²
y.x2=∫x2exdx
yx2=x2ex−∫2xexdx
=x2ex−2(xex−ex)+c
yx2=x2ex−2xex+2ex+c
yx2=(x2−2x+2)ex+c
0=e+c⇒c=−e
y(x).x2−ex=(x−1)2ex−e
z(x)=(x−1)2ex−e
For local maximum z′(x) = 0
∴ 2(x−1)ex+(x−1)2ex=0
∴x=−1
And local maximum value = z(-1)
= e4−e