Solveeit Logo

Question

Mathematics Question on Differential equations

If y = y(x) is the solution of the differential equation
xx dydx\frac{dy}{dx} +2y=+ 2y = xex,y(1)=0xe^x , y(1) = 0
then the local maximum value of the function
z(x)=x2y(x)ex,xRz(x) = x²y(x) - e^x , x ∈ R
is

A

1 - e

B

0

C

12\frac{1}{2}

D

4ee\frac{4}{e} - e

Answer

4ee\frac{4}{e} - e

Explanation

Solution

The correct answer is (D) : 4ee\frac{4}{e} - e
xdydx+2y=xex,y(1)=0x \frac{dy}{dx} + 2y = xe^x , y(1) = 0
\frac{dy}{dx} + \frac{2}{x} y = e^x , then$$e^{\int\frac{2}{x} dx} dx = x²
y.x2=x2exdxy.x² = ∫ x²exdx
yx2=x2ex2xexdxyx² = x²e^x - ∫ 2xe^xdx
=x2ex2(xexex)+c= x²e^x - 2(xe^x - e^x ) + c
yx2=x2ex2xex+2ex+cyx² = x²e^x - 2xe^x + 2e^x + c
yx2=(x22x+2)ex+cyx² = (x² - 2x + 2)e^x + c
0=e+cc=e0 = e + c ⇒ c = -e
y(x).x2ex=(x1)2exey(x).x² - e^x = (x - 1)²e^x - e
z(x)=(x1)2exez(x) = (x - 1)^2e^x - e

For local maximum z′(x) = 0
2(x1)ex+(x1)2ex=02(x - 1)e^x + (x - 1)^2e^x = 0
x=1x = -1
And local maximum value = z(-1)
= 4ee\frac{4}{e} - e