Solveeit Logo

Question

Mathematics Question on Differential equations

If y = y (x) is the solution of the differential equation
(1+e2x)dydx+2(1+y2)ex=0(1 + e^{2x})\frac{dy}{dx} + 2(1 + y^2)e^x = 0
and y(0) = 0, then
6(y(0)+(loge(3))2)6 \left( y'(0) + \left( \log_e\left(\sqrt{3}\right) \right)^2 \right)
is equal to

A

2

B

-2

C

-4

D

-1

Answer

-4

Explanation

Solution

The correct answer is (C) : -4
(1+e2x)dydx+2(1+y2)ex=0(1 + e^{2x})\frac{dy}{dx} + 2(1 + y^2)e^x = 0
dy1+y2=2ex1+e2xdx\int \frac{dy}{1+y^2} = -\int \frac{2e^x}{1+e^{2x}} \,dx exdx=dtex=t\stackrel{e^x = t}{e^xdx=dt}
tan1(y)=2dt1+t2\tan^{-1}(y) = -2\int \frac{dt}{1+t^2}
tan1(y)=2tan1(ex)+c\tan^{-1}(y) = 2\tan^{-1}(e^x) + c
y(0)c=π2y(0) ⇒ c = \frac{π}{2}
tan1(y)=2tan1(ex)+π2\tan^{-1}(y) = -2\tan^{-1}(e^x) + \frac{\pi}{2}
y=cot(2tan1(ex))y = \cot(2\tan^{-1}(e^x))
dydx=cosec2(2tan1(ex)(2ex1+e2x)\frac{dy}{dx} = -cosec^2(2\tan^{-1}(e^x) \cdot (\frac{2e^x}{1+e^{2x}})
y(0)=dydxx=0=22=1y'(0) = \left. \frac{dy}{dx} \right|_{x=0} = -\frac{2}{2} = -1
y=cot(2tan1(ex))y = \cot(2\tan^{-1}(e^x))
y(ln3)=cot(2tan1(eloge3))y(\ln \sqrt{3}) = \cot(2 \tan^{-1}(e^{\log_e \sqrt{3}}))
=cot(2tan1(3))=cot(2π3)=cot(π3)=13= \cot(2\tan^{-1}(\sqrt{3})) = \cot\left(\frac{2\pi}{3}\right) = -\cot\left(\frac{\pi}{3}\right) = -\frac{1}{\sqrt{3}}
6(y(0)+(y(ln3))2)=6(1+(13)2)=6(1+13)=46\left(y'(0) + \left(y(\ln \sqrt{3})\right)^2\right) = 6\left(-1 + \left(-\frac{1}{\sqrt{3}}\right)^2\right) = 6\left(-1 + \frac{1}{3}\right) = -4