Question
Mathematics Question on Differential equations
If y = y (x) is the solution of the differential equation
(1+e2x)dxdy+2(1+y2)ex=0
and y(0) = 0, then
6(y′(0)+(loge(3))2)
is equal to
A
2
B
-2
C
-4
D
-1
Answer
-4
Explanation
Solution
The correct answer is (C) : -4
(1+e2x)dxdy+2(1+y2)ex=0
∫1+y2dy=−∫1+e2x2exdx exdx=dtex=t
tan−1(y)=−2∫1+t2dt
tan−1(y)=2tan−1(ex)+c
y(0)⇒c=2π
tan−1(y)=−2tan−1(ex)+2π
y=cot(2tan−1(ex))
dxdy=−cosec2(2tan−1(ex)⋅(1+e2x2ex)
y′(0)=dxdyx=0=−22=−1
y=cot(2tan−1(ex))
y(ln3)=cot(2tan−1(eloge3))
=cot(2tan−1(3))=cot(32π)=−cot(3π)=−31
6(y′(0)+(y(ln3))2)=6(−1+(−31)2)=6(−1+31)=−4