Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

If y=y(x)y=y(x) is the solution curve of the differential equation dydx+ytanx=xsecx,0xπ3,y(0)=1\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1 then y(π6)y\left(\frac{\pi}{6}\right) is equal to

A

π1232loge(2e3)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e\left(\frac{2}{e \sqrt{3}}\right)

B

π12+32loge(2e3)\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _e\left(\frac{2}{e \sqrt{3}}\right)

C

π12+32loge(23e)\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _e\left(\frac{2 \sqrt{3}}{e}\right)

D

π1232loge(23e)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e\left(\frac{2 \sqrt{3}}{e}\right)

Answer

π1232loge(2e3)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e\left(\frac{2}{e \sqrt{3}}\right)

Explanation

Solution

The correct answer is (A) : π1232loge(2e3)\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e\left(\frac{2}{e \sqrt{3}}\right)
Here I.F. =secx
Then solution of D.E :
y(secx)=xtanx−ln(secx)+c
Given y(0)=1⇒c=1
∴y(secx)=xtanx−ln(secx)+1
At x=6π​,y=12π​+23​​ln23​​+23​​