Question
Mathematics Question on General and Particular Solutions of a Differential Equation
If y=y(x) is the solution curve of the differential equation dxdy+ytanx=xsecx,0≤x≤3π,y(0)=1 then y(6π) is equal to
A
12π−23loge(e32)
B
12π+23loge(e32)
C
12π+23loge(e23)
D
12π−23loge(e23)
Answer
12π−23loge(e32)
Explanation
Solution
The correct answer is (A) : 12π−23loge(e32)
Here I.F. =secx
Then solution of D.E :
y(secx)=xtanx−ln(secx)+c
Given y(0)=1⇒c=1
∴y(secx)=xtanx−ln(secx)+1
At x=6π,y=12π+23ln23+23