Solveeit Logo

Question

Mathematics Question on Differential equations

If y=y(x)y = y(x) is the solution curve of the differential equation (x24)dy(y23y)dx=0,(x^2 - 4) dy - (y^2 - 3y)dx = 0, with x>2,y(4)=32x > 2, y(4) = \frac{3}{2} and the slope of the curve is never zero, then the value of y(10)y(10) equals:

A

31+(8)1/4\frac{3}{1 + (8)^{1/4}}

B

31+22\frac{3}{1 + 2\sqrt{2}}

C

3122\frac{3}{1 - 2\sqrt{2}}

D

31(8)1/4\frac{3}{1 - (8)^{1/4}}

Answer

31+(8)1/4\frac{3}{1 + (8)^{1/4}}

Explanation

Solution

Given:
(x24)dy/dx=(y23y)dx=0.(x^2 - 4)dy/dx = (y^2 - 3y)dx = 0.

Rearranging:
dyy(y3)=dxx24.\frac{dy}{y(y - 3)} = \frac{dx}{x^2 - 4}.

Using partial fractions:
1y(y3)=13(1y31y).\frac{1}{y(y - 3)} = \frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right).

So:
13(1y31y)dy=dxx24.\frac{1}{3} \left(\frac{1}{y - 3} - \frac{1}{y}\right) dy = \frac{dx}{x^2 - 4}.

Integrating both sides:
13(lny3lny)=14lnx2x+2+C.\frac{1}{3} (\ln|y - 3| - \ln|y|) = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.

Simplifying:
13lny3y=14lnx2x+2+C.\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln\left|\frac{x - 2}{x + 2}\right| + C.

Given x=4x = 4 and y=32y = \frac{3}{2}, substituting these values:
13ln32332=14ln424+2+C.\frac{1}{3} \ln \frac{\frac{3}{2} - 3}{\frac{3}{2}} = \frac{1}{4} \ln \left|\frac{4 - 2}{4 + 2}\right| + C.

13ln3232=14ln26+C.\frac{1}{3} \ln \frac{-\frac{3}{2}}{\frac{3}{2}} = \frac{1}{4} \ln \frac{2}{6} + C.

Calculating CC:
C=14ln3.C = \frac{1}{4} \ln 3.

At x=10x = 10:
13lny3y=14ln10210+2+14ln3.\frac{1}{3} \ln \frac{y - 3}{y} = \frac{1}{4} \ln \left|\frac{10 - 2}{10 + 2}\right| + \frac{1}{4} \ln 3.

Simplifying:
lny3y=ln23/4.\ln \frac{y - 3}{y} = \ln 2^{3/4}.

Thus:
lny3y=ln23/4.\ln \frac{y - 3}{y} = \ln 2^{3/4}.

Given that y(4)=32y(4) = \frac{3}{2} and $y \in (0, 3): \frac{dy}{dx} < 0.\

The Correct answer is: ( \frac{3}{1 + (8)^{1/4}} $