Question
Mathematics Question on Differential equations
If y=y(x) is the solution curve of the differential equation (x2−4)dy−(y2−3y)dx=0, with x>2,y(4)=23 and the slope of the curve is never zero, then the value of y(10) equals:
1+(8)1/43
1+223
1−223
1−(8)1/43
1+(8)1/43
Solution
Given:
(x2−4)dy/dx=(y2−3y)dx=0.
Rearranging:
y(y−3)dy=x2−4dx.
Using partial fractions:
y(y−3)1=31(y−31−y1).
So:
31(y−31−y1)dy=x2−4dx.
Integrating both sides:
31(ln∣y−3∣−ln∣y∣)=41lnx+2x−2+C.
Simplifying:
31lnyy−3=41lnx+2x−2+C.
Given x=4 and y=23, substituting these values:
31ln2323−3=41ln4+24−2+C.
31ln23−23=41ln62+C.
Calculating C:
C=41ln3.
At x=10:
31lnyy−3=41ln10+210−2+41ln3.
Simplifying:
lnyy−3=ln23/4.
Thus:
lnyy−3=ln23/4.
Given that y(4)=23 and $y \in (0, 3): \frac{dy}{dx} < 0.\
The Correct answer is: ( \frac{3}{1 + (8)^{1/4}} $