Solveeit Logo

Question

Question: If \(y = x^{x^{x.....\infty}}\), then \(x(1 - y\log_{e}x)\frac{dy}{dx}\) is...

If y=xxx.....y = x^{x^{x.....\infty}}, then x(1ylogex)dydxx(1 - y\log_{e}x)\frac{dy}{dx} is

A

x2x^{2}

B

y2y^{2}

C

xy2xy^{2}

D

None of these

Answer

y2y^{2}

Explanation

Solution

y=xxx......y = x^{x^{x......\infty}}y=xyy = x^{y}logey=ylogex\log_{e}y = y\log_{e}x

1ydydx=yx+logexdydx\frac{1}{y} \cdot \frac{dy}{dx} = \frac{y}{x} + \log_{e}x\frac{dy}{dx}(1ylogex)dydx=yx\left( \frac{1}{y} - \log_{e}x \right)\frac{dy}{dx} = \frac{y}{x}

x(1ylogex)dydx=y2x(1 - y\log_{e}x)\frac{dy}{dx} = y^{2}