Question
Question: If \(y = x^{2}\log x,\) then value of \(y_{n}\) is...
If y=x2logx, then value of yn is
A
xn−2(−1)n−1(n−3)!
B
xn−2(−1)n−1(n−3)!.2
C
xn−2(−1)n−1(n−2)!
D
None of these
Answer
xn−2(−1)n−1(n−3)!.2
Explanation
Solution
Applying Leibnitz’s theorem by taking x2 as second function, we get, Dny=Dn(logx.x2)
= nC0Dn(logx).x2+n⥂C1Dn−1(logx).D(x2)+n⥂C2Dn−2(logx)D2(x2)+........... = xn(−1)n−1(n−1)!.x2+n.xn−1(−1)n−2(n−2)!.2x+2!n(n−1)xn−2(−1)n−3(n−3)!.2+0+0......... = xn−2(−1)n−1(n−1)!+xn−22n(−1)n−2(n−2)!+xn−2n(n−1)(−1)n−3(n−3)!
= xn−2(−1)n−1(n−3)!×{(n−1)(n−2)−2n(n−2)+n(n−1)}
=. xn−2(−1)n−1(n−3)!.2