Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

If y(x)=(xx)x,x>0y(x) = (x^x)^x, \quad x > 0, then d2xdy2+20\frac{d^2x}{dy^2} + 20 at x=1x = 1 is equal to __________.

Answer

y(x)=(xx)xy(x) = (x^x)^x
y=xx2y=x^{x^2}
dydx=x2xx21+xx2ln(x)2x\frac{dy}{dx} = x^2 \cdot x^{x^2 - 1} + x ^{x^2} \ln(x) \cdot 2x
\frac{dx}{dy} = \frac{1}{x^{2} + 1(1 + 2\ln x)}$$...........(i)
Now,
d2xdx2=ddx((xx2+1(1+2lnx))1)dxdy\frac{d^2x}{dx^2} = \frac{d}{dx}\left((x^{x^2} + 1(1 + 2\ln x))^{-1}\right) \cdot \frac{dx}{dy}

== x(xx2+1(1+2lnx))2xx2(1+2lnx)(x2+2x2lnx+3)xx2(1+2lnx)\frac{-x(x^{x^2}+1(1+2\ln x))^{-2} \cdot x^{ x^2}(1+2\ln x)(x^2+2x^2\ln x+3)}{x^{x^2} \cdot (1+2\ln x)}

== xx2(1+2lnx)(x2+3+2x2lnx)(xx2(1+2lnx))3-\frac{x^{ x^2}(1+2\ln x)(x^2+3+2x^2\ln x)}{(x^{x^2} \cdot (1+2\ln x))^3}

d2xdy2(at x=1)=4\frac{d^2x}{dy^2( at \ x=1)}=−4

d2xdy2(at x=1)+20=16\frac{d^2x}{dy2( at \ ^x=1)}+20=16