Question
Mathematics Question on Logarithmic Differentiation
If y(x)=(xx)x,x>0, then dy2d2x+20 at x=1 is equal to __________.
Answer
∵ y(x)=(xx)x
∴ y=xx2
∴ dxdy=x2⋅xx2−1+xx2ln(x)⋅2x
∴ …\frac{dx}{dy} = \frac{1}{x^{2} + 1(1 + 2\ln x)}$$...........(i)
Now,
dx2d2x=dxd((xx2+1(1+2lnx))−1)⋅dydx
= xx2⋅(1+2lnx)−x(xx2+1(1+2lnx))−2⋅xx2(1+2lnx)(x2+2x2lnx+3)
= −(xx2⋅(1+2lnx))3xx2(1+2lnx)(x2+3+2x2lnx)
dy2(at x=1)d2x=−4
∴ dy2(at x=1)d2x+20=16