Solveeit Logo

Question

Question: If \(y = {x^{{x^{{x^{x...\infty }}}}}}\) then \(\dfrac{{dy}}{{dx}} = \)? \[ \left( A \right)\q...

If y=xxxx...y = {x^{{x^{{x^{x...\infty }}}}}} then dydx=\dfrac{{dy}}{{dx}} = ?

(A)yx(1logx) (B)y2x(1logx) (C)y2x(1ylogx) (D)none  of  these  \left( A \right)\quad \dfrac{y}{{x\left( {1 - \log x} \right)}} \\\ \left( B \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - \log x} \right)}} \\\ \left( C \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}} \\\ \left( D \right)\quad none\;of\;these \\\
Explanation

Solution

We will first convert the given equation in a familiar one (exponential, linear etc). Here we will convert the equation in exponential form. After that take the log on both sides and differentiate.

Complete step-by-step answer:
We are given that y=xxxx...y = {x^{{x^{{x^{x...\infty }}}}}}. If we look closely, we can observe that,

y=xxxx... y=(x)xxx... y=(x)y y=xy  \Rightarrow y = {x^{{x^{{x^{x...\infty }}}}}} \\\ \Rightarrow y = {\left( x \right)^{{x^{{x^{x...\infty }}}}}} \\\ \Rightarrow y = {\left( x \right)^y} \\\ \Rightarrow y = {x^y} \\\

As we know, when we have to find the dydx\dfrac{{dy}}{{dx}} of exponential functions, we first take the log\log on both sides of equations and proceed further.
y=xy\Rightarrow y = {x^y}
We know that log(mn)=nlog(m)\log \left( {{m^n}} \right) = n\log \left( m \right).
Taking log\log both sides, we get
log(y)=log(xy) log(y)=ylog(x)  \Rightarrow \log \left( y \right) = \log \left( {{x^y}} \right) \\\ \Rightarrow \log \left( y \right) = y\log \left( x \right) \\\
Now, we will differentiate the equation on both sides.
d(log(y))dxdydx=d(ylog(x))dx\Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}}
As we know, d(u.v)dx=udvdx+vdudx\dfrac{{d\left( {u.v} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}
Therefore,
d(log(y))dxdydx=d(ylog(x))dx (1y)dydx=dydx(log(x))+y(1x)  \Rightarrow \dfrac{{d\left( {\log \left( y \right)} \right)}}{{dx}}\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {y\log \left( x \right)} \right)}}{{dx}} \\\ \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\\
On simplifying this, we will get
(1y)dydx=dydx(log(x))+y(1x) (1ylogx)dydx=yx (1ylogxy)dydx=yx dydx=(yx)(y1ylogx) dydx=y2x(1ylogx)  \Rightarrow \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dx}}\left( {\log \left( x \right)} \right) + y\left( {\dfrac{1}{x}} \right) \\\ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\\ \Rightarrow \left( {\dfrac{{1 - y\log x}}{y}} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {\dfrac{y}{x}} \right)\left( {\dfrac{y}{{1 - y\log x}}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}} \\\
Hence the answer is (C)y2x(1ylogx)\left( C \right)\quad \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}.
Additional information : Some of the properties and useful formulas are as follows.
log(mn)=log(m)+log(n) log(mn)=nlog(m)  \Rightarrow \log \left( {mn} \right) = \log \left( m \right) + \log \left( n \right) \\\ \Rightarrow \log \left( {{m^n}} \right) = n\log \left( m \right) \\\

Note: It is necessary to convert the given form of y=xxxx...y = {x^{{x^{{x^{x...\infty }}}}}}in the formy=xyy = {x^y}. Otherwise we won’t be able to solve the question properly.