Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=xx,x>0y = x^x , x > 0 , then dydx\frac{dy}{dx} is

A

log x

B

2 + log x

C

xxlogxx^x \log x

D

xx(1+logx)x^x ( 1 + \log x )

Answer

xx(1+logx)x^x ( 1 + \log x )

Explanation

Solution

y=xxlogy=xlogxy =x^{x} \Rightarrow \log y =x \log x 1ydydx=x.1x+logx.1 \Rightarrow \frac{1}{y} \frac{dy}{dx} = x. \frac{1}{x} + \log x.1 dydx=y(1+logx)=xx(1+logx)\Rightarrow \frac{dy}{dx} = y\left(1+\log x\right) =x^{x} \left(1+\log x\right)