Solveeit Logo

Question

Question: If \(y = {x^x}\), prove that \(\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}}...

If y=xxy = {x^x}, prove that d2ydx21y(dydx)2yx=0\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0 .

Explanation

Solution

Hint: In this question first we take log both side and simply differentiate expression y=xxy = {x^x} with respect to xx and find the value of dydx\dfrac{{dy}}{{dx}} & d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} after that value of dydx\dfrac{{dy}}{{dx}} &d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} and put left hand side of differential expression d2ydx21y(dydx)2yx=0\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0.

Let d2ydx21y(dydx)2yx=0\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0 ……. (1)
Consider y=xxy = {x^x}
Take log both side
logy=logxx\log y = \log {x^x}
Apply log property (logab=bloga)\left( {\log {a^b} = b\log a} \right)
logy=xlogx\log y = x\log x
Differentiate with respect to xx
1ydydx=x×1x+logx\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x
dydx=y(1+logx)\dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) ……. (2)
Differentiate equation (2) with respect to xx
d2ydx2=y(0+1x)+(1+logx)dydx\dfrac{{{d^2}y}}{{d{x^2}}} = y\left( {0 + \dfrac{1}{x}} \right) + \left( {1 + \log x} \right)\dfrac{{dy}}{{dx}}
Put value of dydx\dfrac{{dy}}{{dx}} in above expression
d2ydx2=yx+y(1+logx)2\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{y}{x} + y{\left( {1 + \log x} \right)^2}…….(3)
Value of dydx\dfrac{{dy}}{{dx}} and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} from equation 2 and 3 put into equation 1
yx+y(1+logx)21y(y(1+logx))2yx=0\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - \dfrac{1}{y}{\left( {y\left( {1 + \log x} \right)} \right)^2} - \dfrac{y}{x} = 0
yx+y(1+logx)2y(1+logx)2yx=0\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - y{\left( {1 + \log x} \right)^2} - \dfrac{y}{x} = 0
Here we can see that after solving left hand side will be zero
So L.H.S=R.H.S
Hence proved

Note: In this question we use log property logab=bloga\log {a^b} = b\log a and also we use some basic differentiation formula like
ddxlogx=1x   \dfrac{d}{{dx}}\log x = \dfrac{1}{x} \\\ \\\
ddx(uv)=uddxv+vddxu\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u here uu and vv are function of real variable xx and this formula also known as product rule for derivatives.
ddxx=1\dfrac{d}{{dx}}x = 1