Solveeit Logo

Question

Question: If y = (x + \(\sqrt{1 + x^{2}}\))<sup>n</sup> , then (1 + x<sup>2</sup>) \(\frac{d^{2}y}{dx^{2}}\) +...

If y = (x + 1+x2\sqrt{1 + x^{2}})n , then (1 + x2) d2ydx2\frac{d^{2}y}{dx^{2}} + x dydx\frac{dy}{dx} is –

A

n2y

B

– n2y

C

– y

D

2 n2y

Answer

n2y

Explanation

Solution

We have, y =(x+1+x2)n\left( x + \sqrt{1 + x^{2}} \right)^{n} ... (i)

Let d2ydx2\frac{d^{2}y}{dx^{2}}= y2

and dydx\frac{dy}{dx} = y1

On differentiating Equation (i), we get

dydx\frac{dy}{dx}=n [x+1+x2]n1\left\lbrack x + \sqrt{1 + x^{2}} \right\rbrack^{n - 1} (1+xx2+1)\left( 1 + \frac{x}{\sqrt{x^{2} + 1}} \right)

= n[x+1+x2]n1+x2\frac{n\left\lbrack x + \sqrt{1 + x^{2}} \right\rbrack^{n}}{\sqrt{1 + x^{2}}}

Ž dydx\frac{dy}{dx} = ny1+x2\frac{ny}{\sqrt{1 + x^{2}}}

y12y_{1}^{2} (1 + x2) = n2y2

Again differentiating, we get

2y1y2 (1 + x2) + 2xy12y_{1}^{2} = 2n2 yy1

Dividing by 2y1

y2 (1 + x2) + xy1 = n2y

Ž d2ydx2\frac{d^{2}y}{dx^{2}} (1 + x2) + x dydx\frac{dy}{dx} = n2 y