Question
Question: If y = (x + \(\sqrt{1 + x^{2}}\))<sup>n</sup> , then (1 + x<sup>2</sup>) \(\frac{d^{2}y}{dx^{2}}\) +...
If y = (x + 1+x2)n , then (1 + x2) dx2d2y + x dxdy is –
A
n2y
B
– n2y
C
– y
D
2 n2y
Answer
n2y
Explanation
Solution
We have, y =(x+1+x2)n ... (i)
Let dx2d2y= y2
and dxdy = y1
On differentiating Equation (i), we get
dxdy=n [x+1+x2]n−1 (1+x2+1x)
= 1+x2n[x+1+x2]n
Ž dxdy = 1+x2ny
y12 (1 + x2) = n2y2
Again differentiating, we get
2y1y2 (1 + x2) + 2xy12 = 2n2 yy1
Dividing by 2y1
y2 (1 + x2) + xy1 = n2y
Ž dx2d2y (1 + x2) + x dxdy = n2 y