Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If y=xsin(x)+(sin(x))xy = x^{\sin(x)} + (\sin(x))^x, then dydxx=π2\left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}} is

A

4π\frac{4}{\pi}

B

1

C

πlog(π2)\pi \log \left(\frac{\pi}{2}\right)

D

π22\frac{\pi^2}{2}

Answer

1

Explanation

Solution

Given expression y=xsin(x)+(sin(x))xy = x^{\sin(x)} + (\sin(x))^x with respect to x.
Using the sum rule, we differentiate each term separately.
For the first term, xsin(x)x^{\sin(x)}
ddx(xsin(x))=(sin(x))(xsin(x)1)+(xsin(x))(ln(x))cos(x)\frac{d}{dx}(x^{\sin(x)}) = (\sin(x)) \cdot (x^{\sin(x)-1}) + (x^{\sin(x)}) \cdot (\ln(x)) \cdot \cos(x)

For the second term, (sin(x))x(\sin(x))^x
ddx((sin(x))x)=(sin(x))xln(sin(x))cos(x)+(sin(x))x1xcos(x)\frac{d}{dx}((\sin(x))^x) = (\sin(x))^x \cdot \ln(\sin(x)) \cdot \cos(x) + (\sin(x))^{x-1} \cdot x \cdot \cos(x)

Now, we can find dydx\frac{dy}{dx} by adding the derivatives of both terms:
dydx=(sin(x))(xsin(x)1)+(xsin(x))(ln(x))cos(x)+(sin(x))xln(sin(x))cos(x)+(sin(x))x1xcos(x)\frac{dy}{dx} = (\sin(x)) \cdot (x^{\sin(x)-1}) + (x^{\sin(x)}) \cdot (\ln(x)) \cdot \cos(x) + (\sin(x))^x \cdot \ln(\sin(x)) \cdot \cos(x) + (\sin(x))^{x-1} \cdot x \cdot \cos(x)

To evaluate dydxx=π2=(sin(π2))(π2sin(π2)1)+(π2sin(π2))(ln(π2))cos(π2)+(sin(π2))π2ln(sin(π2)\left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}} = (\sin(\frac{\pi}{2})) \cdot (\frac{\pi}{2}^{\sin(\frac{\pi}{2})-1}) + (\frac{\pi}{2}^{\sin(\frac{\pi}{2})}) \cdot (\ln(\frac{\pi}{2})) \cdot \cos(\frac{\pi}{2}) + (\sin(\frac{\pi}{2}))^{\frac{\pi}{2}} \cdot \ln(\sin(\frac{\pi}{2})
Simplifying the trigonometric functions and evaluating the values:
dydxx=π2=(1)((π2)11)+((π2)1)(ln(π2))(0)+(1)π2ln(1)(0)+(1)π21(π2)(0)\frac{dy}{dx} \bigg|_{x=\frac{\pi}{2}} = (1) \cdot \left( \left(\frac{\pi}{2}\right)^{1-1} \right) + \left( \left(\frac{\pi}{2}\right)^1 \right) \cdot \left( \ln\left(\frac{\pi}{2}\right) \right) \cdot (0) + (1)^{\frac{\pi}{2}} \cdot \ln(1) \cdot (0) + (1)^{\frac{\pi}{2}-1} \cdot \left( \frac{\pi}{2} \right) \cdot (0)
dydxx=π2=(1)(1)+(1)(ln(π2))(0)+(1)(0)+(1)(π2)(0\frac{dy}{dx} \bigg|_{x=\frac{\pi}{2}} = (1) \cdot (1) + (1) \cdot \left( \ln\left(\frac{\pi}{2}\right) \right) \cdot (0) + (1) \cdot (0) + (1) \cdot \left( \frac{\pi}{2} \right) \cdot (0
dydxx=π2=1+0+0+0\frac{dy}{dx} \bigg|_{x=\frac{\pi}{2}} = 1 + 0 + 0 + 0
dydxx=π2=1\frac{dy}{dx} \bigg|_{x=\frac{\pi}{2}} = 1
Therefore, the value of dydx at x=π2 is 1\frac{dy}{dx} \text{ at } x = \frac{\pi}{2} \text{ is } 1 corresponding to option (B) 1.