Solveeit Logo

Question

Mathematics Question on Differential Calculus

If y=xex+xeforx>0y=x^{e^x}+x^{e} for x>0,the dydx \dfrac{dy}{dx} is equal to ?

A

xex[1/x+lnx]+exx^{e^x}[1/x+lnx]+e^x

B

xexex[1/x+lnx]+exe1x^{e^x} e^x[1/x+lnx]+ex^e-1

C

ex.xex1+exee^x.x^{e^x-1}+ex^e

D

xexex[1/xlnx]+exe1x^{e^x }e^-x[1/x-lnx]+ex^e-1

E

xexex[1/xlnx]+exe1x^{e^x} e^x[1/x-lnx]+ex^e-1

F

=ex.xex1+e.xe1=e^{x}.x^{e^x-1}+e.x^{e-1}

Answer

=ex.xex1+e.xe1=e^{x}.x^{e^x-1}+e.x^{e-1}

Explanation

Solution

y=xex+xe for x>0y=x^{e^x}+x^{e} \text{ for } x>0

Now dydx\dfrac{dy}{dx} for x>0 x>0can be represented as

ddx(xex+xe)\dfrac{d}{dx}(x^{e^x}+x^{e})

=ex.xex1+e.xe1=e^{x}.x^{e^x-1}+e.x^{e-1} (_Ans)