Solveeit Logo

Question

Mathematics Question on Differentiability

If y=xe2y,y=x{{e}^{2y}}, then find dydx\frac{ dy}{dx} .

A

y(x(12x))\frac { y} {(x(1-2x))}

B

x(y(12x))\frac { x} {(y\,(1-2x))}

C

xy(12y)\frac {x} {y(1-2y)}

D

yx(12y)\frac {y} {x(1-2y)}

Answer

yx(12y)\frac {y} {x(1-2y)}

Explanation

Solution

We have y=xe2yy=x{{e}^{2y}} Taking log on both sides, we get logy=log(xe2y)\log y=\log (x{{e}^{2y}})
\Rightarrow logy=logx+2yloge\log y=\log x+2y\log e
\Rightarrow logy=logx+2y\log y=\log x+2y
On differentiating w. r. t. x, we get 1ydydx=1x+2dydx\frac{1}{y}\frac{dy}{dx}=\frac{1}{x}+2\frac{dy}{dx}
\Rightarrow dydx(1y2)=1x\frac{dy}{dx}\left( \frac{1}{y}-2 \right)=\frac{1}{x}
\Rightarrow dydx=1x×y(12y)\frac{dy}{dx}=\frac{1}{x}\times \frac{y}{(1-2y)}
\Rightarrow dydx=yx(12y)\frac{dy}{dx}=\frac{y}{x(1-2y)}