Question
Mathematics Question on Differentiability
If y=xe2y, then find dxdy .
A
(x(1−2x))y
B
(y(1−2x))x
C
y(1−2y)x
D
x(1−2y)y
Answer
x(1−2y)y
Explanation
Solution
We have y=xe2y Taking log on both sides, we get logy=log(xe2y)
⇒ logy=logx+2yloge
⇒ logy=logx+2y
On differentiating w. r. t. x, we get y1dxdy=x1+2dxdy
⇒ dxdy(y1−2)=x1
⇒ dxdy=x1×(1−2y)y
⇒ dxdy=x(1−2y)y