Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

If y(x) be the solution of the differential equation xlog(x)dydx+y=2xlog(x),y(e)x \log(x) \frac{dy}{dx} + y = 2x \log(x), \quad y(e) is equal to

A

e

B

2

C

0

D

2e

Answer

2

Explanation

Solution

The equation can be rewritten as:
dydx+1xy=2logx\frac{dy}{dx} + \frac{1}{x} y = 2 \log x
Comparing this with the standard form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)
we have
P(x)=1xandQ(x)=2logxP(x) = \frac{1}{x} \quad \text{and} \quad Q(x) = 2\log x

To find the integrating factor (IF), we calculate the exponential of the integral of
P(x):IF=e1xdx=elnx=xP(x): \text{IF} = e^{\int \frac{1}{x} \, dx} = e^{\ln|x|} = |x|
Multiplying both sides of the differential equation by the integrating factor, we get:
xdydx+yx=2logxx|x| \frac{dy}{dx} + \frac{y}{x} = 2 \log x |x|
Now, the left side of the equation is the derivative of the product(yx)(y|x|) with respect to x:
ddx(yx)=2logxx\frac{d}{dx}(y|x|) = 2\log x |x|
Integrating both sides, we have:
yx=2logxxdxy|x| = \int 2\log x |x| \, dx
Using integration by parts, we can evaluate the integral on the right side:
yx=2logxd(x22)2d(logx)x22dxyxy|x| = 2 \int \log x \, d\left(\frac{x^2}{2}\right) - 2 \int d(\log x) \cdot \frac{x^2}{2} \, dx \, y|x|

= 2[x22logxxx2x22dx]yx2 \left[\frac{x^2}{2} \log x - \int \frac{x}{x^2} \cdot \frac{x^2}{2} \, dx \right] y|x|

=x2logxxdxyxx^2 \log x - \int x \, dx \, y|x|

= x2logxx22+Cx^2 \log x - \frac{x^2}{2} + C
To find the value of C, we can use the initial condition
y(e)=y(2.71828)=2:2y(e) = y(2.71828) = 2: 2
= (2.718282)log2.71828(2.718282)2+C×2(2.71828^2) \log 2.71828 - \frac{(2.71828^2)}{2} + C \times 2

= (2.718282)(2.718282)2+C×2(2.71828^2) - \frac{(2.71828^2)}{2} + C \times 2

= (2.718282)2+C×C\frac{(2.71828^2)}{2} + C \times C
= 2(2.718282)2×C2 - \frac{(2.71828^2)}{2} \times C
1.34738≈ -1.34738

Therefore, the solution to the differential equation is:
yx=x2logxx221.34738y|x| = x^2 \log x - \frac{x^2}{2} - 1.34738
To find y(e), we substitute
x=e:y(e)=(e2)logee221.34738y(e)x = e: \quad y(e) = (e^2) \log e - \frac{e^2}{2} - 1.34738 \, y(e)

= e2e221.34738y(e)e^2 - \frac{e^2}{2} - 1.34738 \, y(e)

= e221.34738\frac{e^2}{2} - 1.34738

So, y(e)(2.718282)21.34738y(e) \approx \frac{(2.71828^2)}{2} - 1.34738 which is approximately 2.35067\text{which is approximately } 2.35067
Therefore, the value of y(e) is approximately 2.35067 , which corresponds to option (B) 2.