Solveeit Logo

Question

Question: If \(y = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + ......,\) then \(x =\)...

If y=xx22!+x33!x44!+......,y = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + ......, then x=x =

A

loge(1y)\log_{e}(1 - y)

B

1loge(1y)\frac{1}{\log_{e}(1 - y)}

C

loge11y\log_{e}\frac{1}{1 - y}

D

loge(1+y)\log_{e}(1 + y)

Answer

loge11y\log_{e}\frac{1}{1 - y}

Explanation

Solution

exex+1\frac{e^{x} - e}{x + 1}

exex1\frac{e^{x} - e}{x - 1}.