Question
Mathematics Question on Differential Calculus
If y(θ)=cos3θ+4cos2θ+5cosθ+22cosθ+cos2θ, then at θ=2π,y′′+y′+y is equal to:
A
23
B
1
C
21
D
2
Answer
2
Explanation
Solution
Given:
y(θ)=4cos3θ+8cos2θ+5cosθ+22cosθ+2cos2θ−1.
Factoring the numerator and denominator, we get:
y(θ)=21⋅1+cosθ1.
Step 1: Evaluate y(θ) at θ=2π
Substitute θ=2π: y(2π)=21⋅1+cos(2π)1=21⋅1+01=21.
Step 2: First Derivative y′(θ)
Differentiate y(θ) using the chain rule: y′(θ)=21(−(1+cosθ)21)⋅(−sinθ). Evaluating at θ=2π: y′(2π)=21⋅(1+0)21=21.
Step 3: Second Derivative y′′(θ)
Differentiate y′(θ): y′′(θ)=21((1+cosθ)4cosθ(1+cosθ)2−sinθ⋅2(1+cosθ)⋅(−sinθ)). Simplifying and evaluating at θ=2π: y′′(2π)=1.
Step 4: Summing the Values
y′′(2π)+y′(2π)+y(2π)=1+21+21=2.
Therefore, the correct answer is Option (4).