Solveeit Logo

Question

Mathematics Question on Differential Calculus

If y(θ)=2cosθ+cos2θcos3θ+4cos2θ+5cosθ+2y(\theta) = \frac{2\cos\theta + \cos2\theta}{\cos3\theta + 4\cos2\theta + 5\cos\theta + 2}, then at θ=π2,y+y+y\theta = \frac{\pi}{2}, y'' + y' + y is equal to:

A

32\frac{3}{2}

B

1

C

12\frac{1}{2}

D

2

Answer

2

Explanation

Solution

Given:

y(θ)=2cosθ+2cos2θ14cos3θ+8cos2θ+5cosθ+2.y(\theta) = \frac{2 \cos \theta + 2 \cos^2 \theta - 1}{4 \cos^3 \theta + 8 \cos^2 \theta + 5 \cos \theta + 2}.

Factoring the numerator and denominator, we get:

y(θ)=1211+cosθ.y(\theta) = \frac{1}{2} \cdot \frac{1}{1 + \cos \theta}.

Step 1: Evaluate y(θ)y(\theta) at θ=π2\theta = \frac{\pi}{2}
Substitute θ=π2\theta = \frac{\pi}{2}: y(π2)=1211+cos(π2)=1211+0=12.y\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{1 + \cos\left(\frac{\pi}{2}\right)} = \frac{1}{2} \cdot \frac{1}{1 + 0} = \frac{1}{2}.

Step 2: First Derivative y(θ)y'(\theta)
Differentiate y(θ)y(\theta) using the chain rule: y(θ)=12(1(1+cosθ)2)(sinθ).y'(\theta) = \frac{1}{2} \left(-\frac{1}{(1 + \cos \theta)^2}\right) \cdot (-\sin \theta). Evaluating at θ=π2\theta = \frac{\pi}{2}: y(π2)=121(1+0)2=12.y'\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{(1 + 0)^2} = \frac{1}{2}.

Step 3: Second Derivative y(θ)y''(\theta)
Differentiate y(θ)y'(\theta): y(θ)=12(cosθ(1+cosθ)2sinθ2(1+cosθ)(sinθ)(1+cosθ)4).y''(\theta) = \frac{1}{2} \left(\frac{\cos \theta (1 + \cos \theta)^2 - \sin \theta \cdot 2(1 + \cos \theta) \cdot (-\sin \theta)}{(1 + \cos \theta)^4}\right). Simplifying and evaluating at θ=π2\theta = \frac{\pi}{2}: y(π2)=1.y''\left(\frac{\pi}{2}\right) = 1.

Step 4: Summing the Values
y(π2)+y(π2)+y(π2)=1+12+12=2.y''\left(\frac{\pi}{2}\right) + y'\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right) = 1 + \frac{1}{2} + \frac{1}{2} = 2.

Therefore, the correct answer is Option (4).