Solveeit Logo

Question

Question: If y = tan<sup>–1</sup>\(\sqrt{\frac{1 - \sin x}{1 + \sin x}}\), then the value of dy/dx at x = π/6 ...

If y = tan–11sinx1+sinx\sqrt{\frac{1 - \sin x}{1 + \sin x}}, then the value of dy/dx at x = π/6 is

A

–1/2

B

½

C

1

D

–1

Answer

–1/2

Explanation

Solution

y = tan–1 (sinx/2cosx/2)2(sinx/2+cosx/2)2\sqrt{\frac{(\sin x/2 - \cos x/2)^{2}}{(\sin x/2 + \cos x/2)^{2}}}

= tan–1 sinx/2cosx/2sinx/2+cosx/2\left| \frac{\sin x/2 - \cos x/2}{\sin x/2 + \cos x/2} \right|

x = π/6, sinx/2 – cos x/2 < 0

sinx/2cosx/2sinx/2+cosx/2\left| \frac{\sin x/2 - \cos x/2}{\sin x/2 + \cos x/2} \right| = – sinx/2cosx/2sinx/2+cosx/2\frac{\sin x/2 - \cos x/2}{\sin x/2 + \cos x/2}

= 1tanx/21+tanx/2\frac{1 - \tan x/2}{1 + \tan x/2}

= tan (π4x2)\left( \frac{\pi}{4} - \frac{x}{2} \right)

y = π4x2\frac{\pi}{4} - \frac{x}{2}dydx\frac{dy}{dx} = – 12\frac{1}{2}