Solveeit Logo

Question

Question: If y = tan<sup>–1</sup>\(\left( \frac{\log(e/x^{3})}{\log(ex^{3})} \right)\)+ tan<sup>–1</sup>\(\lef...

If y = tan–1(log(e/x3)log(ex3))\left( \frac{\log(e/x^{3})}{\log(ex^{3})} \right)+ tan–1(log(e4x3)log(e/x12))\left( \frac{\log(e^{4}x^{3})}{\log(e/x^{12})} \right), then d2ydx2\frac{d^{2}y}{dx^{2}}is equal to-

A

1

B

0

C

–1

D

None of these

Answer

0

Explanation

Solution

y = sin–1 (13logx1+3logx)\left( \frac{1 - 3\log x}{1 + 3\log x} \right)+ tan–1 (4+3logπ112logx)\left( \frac{4 + 3\log\pi}{1 - 12\log x} \right)

y = tan–1 (1) – tan–1 |3 tan x| + tan–1 (4)+ tan–1(3 tan θ)

y = tan–1 (1) + tan–1 4

dydx\frac{dy}{dx}= 0 ⇒ d2ydx2\frac{d^{2}y}{dx^{2}}= 0