Solveeit Logo

Question

Question: If y = tan<sup>–1</sup>\(\left( \frac{2^{x}}{1 + 2^{x + 1}} \right)\)then \(\frac{dy}{dx}\) at x = 0...

If y = tan–1(2x1+2x+1)\left( \frac{2^{x}}{1 + 2^{x + 1}} \right)then dydx\frac{dy}{dx} at x = 0 is

A

35–\frac{3}{5}loge2

B

110\frac{1}{10} loge2

C

2

D

None

Answer

110\frac{1}{10} loge2

Explanation

Solution

dydx=11+(2x1+2(x+1))2×(1+2x+1).2xlog22x.2x+1log2(1+2x+1)2\frac{dy}{dx} = \frac{1}{1 + \left( \frac{2^{x}}{1 + 2^{(x + 1)}} \right)^{2}} \times \frac{(1 + 2^{x + 1}).2^{x}\log 2 - 2^{x}.2^{x + 1}\log 2}{(1 + 2^{x + 1})^{2}}

dydx(x=0)=110\frac{dy}{dx}_{(x = 0)} = \frac{1}{10} loge2