Solveeit Logo

Question

Question: If y = tan<sup>–1</sup>\(\left( \frac{2^{x}}{1 + 2^{x + 1}} \right)\), then dy/dx at x = 0 is :...

If y = tan–1(2x1+2x+1)\left( \frac{2^{x}}{1 + 2^{x + 1}} \right), then dy/dx at x = 0 is :

A

35\frac{3}{5}loge2

B

110\frac{1}{10}loge2

C

2

D

None of these

Answer

110\frac{1}{10}loge2

Explanation

Solution

y = tan–1 (2x1+2x+1)\left( \frac{2^{x}}{1 + 2^{x + 1}} \right)

dydx\frac{dy}{dx}= 11+(2x1+2x+1)2\frac{1}{1 + \left( \frac{2^{x}}{1 + 2^{x + 1}} \right)^{2}} × (1+2x+1)2xlog22x.2x+1log2(1+2x+1)2\frac{(1 + 2^{x + 1})2^{x}\log 2 - 2^{x}.2^{x + 1}\log 2}{(1 + 2^{x + 1})^{2}}r = 0

= 11+(13)2\frac{1}{1 + \left( \frac{1}{3} \right)^{2}}. 3.log21.2log29\frac{3.\log 2 - 1.2\log 2}{9}

= 110\frac{1}{10}. (log23log22)1\frac{(\log 2^{3} - \log 2^{2})}{1}= 110\frac{1}{10}log 2