Solveeit Logo

Question

Question: If \(y = (\tan x)^{(\tan x)^{\tan x}}\), then \(\frac{dy}{dx}\left| \begin{aligned} & \\ & x = \pi...

If y=(tanx)(tanx)tanxy = (\tan x)^{(\tan x)^{\tan x}}, then dydxx=π/4 \frac{dy}{dx}\left| \begin{aligned} & \\ & x = \pi/4 \end{aligned} \right.\ =

A

0

B

2

C

1

D

None

Answer

None

Explanation

Solution

log y = (tan x)tan x log tan x

log(log y) = tan x log tan x + log (log tan x)

1ylogydydx\frac{1}{y\log y}\frac{dy}{dx} = sec2x log tan x + sec2x + 1logtanx.1tanx\frac{1}{{logtan}x}.\frac{1}{\tan x}sec2x

does not exist at x = π/4 because log tan π/4 = 0