Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=tanxy = \tan \: x then d2ydx2\frac{d^2 y}{dx^2} =

A

1+y2 1 + y^2

B

2y(1+y2)2y ( 1 + y^2)

C

y(1+y2)y( 1 + y^2)

D

2y(1y2)2y(1 -y^2)

Answer

2y(1+y2)2y ( 1 + y^2)

Explanation

Solution

Given, y=tanxy = \tan \: x
Differentiating w.r.t. x'x' on both sides dydx=sec2x\frac{dy}{dx} = sec^2 \, x
Taking again derivative w.r.t. xd2ydx2=2secx.secxtanx'x' \:\:\:\frac{d^2 y}{dx^2} =2 sec \, x . \sec \, x \, \tan \, x
=2sec2xtanx=2tanx(1+tan2x)= 2sec^2 x \, \tan\, x = 2\, \tan \, x (1 + tan^2 \, x)
=2y(1+y2)= 2y (1 + y^2)