Question
Question: If $y = \tan^{-1}(\frac{2+3x}{3-2x}) + \tan^{-1}(\frac{4x}{1+5x^2})$, then $\frac{dy}{dx} =$...
If y=tan−1(3−2x2+3x)+tan−1(1+5x24x), then dxdy=

Answer
\frac{5}{1+25x^2}
Explanation
Solution
Solution:
We are given
y=tan−1(3−2x2+3x)+tan−1(1+5x24x).Step 1. Differentiate the first term
Let
A(x)=3−2x2+3x.Using the quotient rule:
A′(x)=(3−2x)2(3)(3−2x)−(2+3x)(−2)=(3−2x)29−6x+4+6x=(3−2x)213.Then, using the derivative of tan−1u=1+u2u′:
dxdtan−1(A(x))=1+A(x)2A′(x)=1+(3−2x2+3x)213/(3−2x)2.Notice that
1+(3−2x2+3x)2=(3−2x)2(3−2x)2+(2+3x)2.Thus,
dxdtan−1(A(x))=(3−2x)2+(2+3x)213.Compute the denominator:
(3−2x)2+(2+3x)2=(9−12x+4x2)+(4+12x+9x2)=13+13x2=13(1+x2).So,
dxdtan−1(A(x))=13(1+x2)13=1+x21.Step 2. Differentiate the second term
Let
B(x)=1+5x24x.Using the quotient rule:
B′(x)=(1+5x2)24(1+5x2)−4x(10x)=(1+5x2)24+20x2−40x2=(1+5x2)24(1−5x2).Then,
dxdtan−1(B(x))=1+B(x)2B′(x).Since
B(x)2=(1+5x2)216x2,we have
1+B(x)2=(1+5x2)2(1+5x2)2+16x2.Thus,
dxdtan−1(B(x))=[(1+5x2)2+16x2]/(1+5x2)24(1−5x2)/(1+5x2)2=(1+5x2)2+16x24(1−5x2).Simplify the denominator:
(1+5x2)2+16x2=1+10x2+25x4+16x2=1+26x2+25x4.Notice that
1+26x2+25x4=(1+x2)(1+25x2).Thus,
dxdtan−1(B(x))=(1+x2)(1+25x2)4(1−5x2).Step 3. Combine the derivatives
The total derivative is:
dxdy=1+x21+(1+x2)(1+25x2)4(1−5x2)=1+x21+1+25x24(1−5x2).Writing the numerator with a common denominator:
=1+x21+25x2(1+25x2)+4(1−5x2)=(1+x2)(1+25x2)(1+25x2)+4(1−5x2).Simplify the numerator:
(1+25x2)+4(1−5x2)=1+25x2+4−20x2=5+5x2=5(1+x2).Cancel (1+x2):
dxdy=1+25x25.Answer:
dxdy=1+25x25