Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=(tan1x)2y=(tan^{-1}x)^2,show that (x2+1)2y2+2x(x2+1)y1=2(x^2+1)^2y_2+2x(x^2+1)y_1=2

Answer

The given relationship is,y=(tan1x)2y=(tan^{-1}x)^2
Then,y1=2tan1xddx(tan1x)y_1=2tan^{-1}x\frac{d}{dx}(tan^{-1}x)
y1=2tan1x.11+x2⇒y_1=2tan^{-1}x.\frac{1}{1+x^2}
(1+x2)y1=2tan1x⇒(1+x^2)y_1=2tan^{-1}x
Again differentiating with respect to xx on both sides,we obtain
(1+x2)y2+2xy1=2(11+x2)(1+x^2)y_2+2xy_1=2(\frac{1}{1+x^2})
(1+x2)2y2+2x(x2+1)y1=2⇒(1+x^2)^2y_2+2x(x^2+1)y_1=2
Hence,proved