Question
Mathematics Question on Continuity and differentiability
If y=tan−1x2−1 then the ratio dx2d2y:dxdy=_________
A
x(x2+1)1+2x2
B
(1−2x2)x(xn+1)
C
(1+2x2)x(x2−1)
D
x(x2−1)1−2x2
Answer
x(x2−1)1−2x2
Explanation
Solution
y=tan−1x2−1 Put {x=secθ dx=secθ⋅tanθdθ y=tan−1sec2θ−1=tan−1(tanθ)=θ =sec−1x ⇒dxdy=dxd(sec−1x)=xx2−11 dx2d2y=x1⋅2−1(x2−1)3/21(2x)−x21⋅x2−11 =−(x2−1)3/21−x2(x2−1)1/21 =−x2(x2−1)3/21(x2+x2−1) =−x2(x2−1)3/2(2x2−1) Now, dx2d2y:dxdy =−x2(x2−1)3/2(2x2−1):x(x2−1)1/21 dx2d2y:dxdy=(1−2x2):x(x2−1) or (dxdydx2d2y) =x(x2−1)(1−2x2)