Solveeit Logo

Question

Question: If \[y = {\tan ^{ - 1}}\sqrt {\dfrac{{\left( {1 - \sin x} \right)}}{{\left( {1 + \sin x} \right)}}} ...

If y=tan1(1sinx)(1+sinx)y = {\tan ^{ - 1}}\sqrt {\dfrac{{\left( {1 - \sin x} \right)}}{{\left( {1 + \sin x} \right)}}} then the value of dydx\dfrac{{dy}}{{dx}} at x=π6x = \dfrac{\pi }{6} is
(1) 12\dfrac{1}{2}
(2) 12 - \dfrac{1}{2}
(3) 11
(4) 1 - 1

Explanation

Solution

We have to differentiate y=tan11sinx1+sinxy = {\tan ^{ - 1}}\sqrt {\dfrac{{1 - \sin x}}{{1 + \sin x}}} with respect to xx to find the value of dydx\dfrac{{dy}}{{dx}} and then we have to put the value of x=π6x = \dfrac{\pi }{6} to get the final result. First, we will simplify this using the periodicity identity i.e., sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right) and we will use the double angle identities i.e., cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta and cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1 then we will use the formula of tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and finally we will use inverse trigonometric formula i.e., tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta then we differentiate the term obtained after simplification and put the given value of xx

Complete answer: Let,
It is given that, y=tan11sinx1+sinx (1)y = {\tan ^{ - 1}}\sqrt {\dfrac{{1 - \sin x}}{{1 + \sin x}}} {\text{ }} - - - \left( 1 \right)
Now, use the periodicity identity
i.e., sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)
1sinx=1cos(π2x)\Rightarrow 1 - \sin x = 1 - \cos \left( {\dfrac{\pi }{2} - x} \right) and
1+sinx=1+cos(π2x)1 + \sin x = 1 + \cos \left( {\dfrac{\pi }{2} - x} \right)
\therefore equation (1)\left( 1 \right) becomes,
y=tan11cos(π2x)1+cos(π2x) (2)y = {\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos \left( {\dfrac{\pi }{2} - x} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - x} \right)}}} {\text{ }} - - - \left( 2 \right)
Now, use the double angle identities,
i.e., cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta
1cos2θ=2sin2θ (a)\Rightarrow 1 - \cos 2\theta = 2{\sin ^2}\theta {\text{ }} - - - \left( a \right)
And cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
1+cos2θ=2cos2θ (b)\Rightarrow 1 + \cos 2\theta = 2{\cos ^2}\theta {\text{ }} - - - \left( b \right)
Now, from equation (2)\left( 2 \right)
2θ=(π2x)2\theta = \left( {\dfrac{\pi }{2} - x} \right)
θ=(π4x2)\Rightarrow \theta = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
\therefore from (a)\left( a \right) when we put the values, we get
1cos(π2x)=2sin2(π4x2)1 - \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\sin ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
and from (b)\left( b \right) we get,
1+cos(π2x)=2cos2(π4x2)1 + \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
So, equation (2)\left( 2 \right) becomes
y=tan12sin2(π4x2)2cos2(π4x2)y = {\tan ^{ - 1}}\sqrt {\dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}}
y=tan1sin2(π4x2)cos2(π4x2) (3)\Rightarrow y = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}} {\text{ }} - - - \left( 3 \right)
We know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
tan2θ=sin2θcos2θ\Rightarrow {\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}
Here, θ=(π4x2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
tan2(π4x2)=sin2(π4x2)cos2(π4x2)\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right) = \dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}
\therefore equation (3)\left( 3 \right) becomes
y=tan1tan2(π4x2) (4)y = {\tan ^{ - 1}}\sqrt {{{\tan }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} {\text{ }} - - - \left( 4 \right)
Now, we know that
x2=x\sqrt {{x^2}} = x
tan2θ=tanθ\therefore \sqrt {{{\tan }^2}\theta } = \tan \theta
Here, θ=(π4x2)\theta = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
tan2(π4x2)=tan(π4x2)\Rightarrow \sqrt {{{\tan }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
\therefore equation (4)\left( 4 \right) becomes,
y=tan1(tan(π4x2)) (5)y = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right){\text{ }} - - - \left( 5 \right)
Now use inverse trigonometric formula, tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta
tan1(tan(π4x2))=(π4x2)\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right) = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
\therefore equation (5)\left( 5 \right) becomes,
y=π4x2 (6)y = \dfrac{\pi }{4} - \dfrac{x}{2}{\text{ }} - - - \left( 6 \right)
We know that d(c)dx=0\dfrac{{d(c)}}{{dx}} = 0 where c is constant
And dxdx=1\dfrac{{dx}}{{dx}} = 1
\therefore on differentiating equation (6)\left( 6 \right) we get,
dydx=012\dfrac{{dy}}{{dx}} = 0 - \dfrac{1}{2}
π4\because \dfrac{\pi }{4} is a constant term
dydx=12\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{2}
As there are no terms of xx in dydx\dfrac{{dy}}{{dx}}
\therefore at x=π6x = \dfrac{\pi }{6} also dydx=12\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}
Hence, option (2)\left( 2 \right) is correct.

Note:
When we are faced with trigonometric questions, think about each identity and properties. Start by identifying which one we really need to use to solve the question. Then, we can quickly determine the best way to simplify the problem and can find a solution.
There is an alternative way to solve this question:
We have given, y=tan11sinx1+sinx (1)y = {\tan ^{ - 1}}\sqrt {\dfrac{{1 - \sin x}}{{1 + \sin x}}} {\text{ }} - - - \left( 1 \right)
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 which can also be written in the form of half angle as
cos2θ2+sin2θ2=1 (a){\cos ^2}\dfrac{\theta }{2} + {\sin ^2}\dfrac{\theta }{2} = 1{\text{ }} - - - \left( a \right)
and sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta which can also be written in the form of half angle as
sinθ=2sinθ2cosθ2 (b)\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}{\text{ }} - - - \left( b \right)
Now, substitute the values of (a)\left( a \right) and (b)\left( b \right) in equation (1)\left( 1 \right) we get
y=tan1cos2x2+sin2x22sinx2cosx2cos2x2+sin2x2+2sinx2cosx2 (2)y = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\cos }^2}\dfrac{x}{2} + {{\sin }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} + {{\sin }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} {\text{ }} - - - \left( 2 \right)
We know that,
(a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
So, equation (2)\left( 2 \right) becomes,
y=tan1(cosx2sinx2)2(cosx2+sinx2)2y = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}^2}}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}}
Cancelling square root, we get
y=tan1(cosx2sinx2cosx2+sinx2)y = {\tan ^{ - 1}}\left( {\dfrac{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}} \right)
Dividing by cosx2\cos \dfrac{x}{2} in numerator and denominator both, we get
y=tan1(1tanx21+tanx2) (3)y = {\tan ^{ - 1}}\left( {\dfrac{{1 - \tan \dfrac{x}{2}}}{{1 + \tan \dfrac{x}{2}}}} \right){\text{ }} - - - \left( 3 \right)
We know that tan(π4x)=1tanx1+tanx\tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}
So, equation (3)\left( 3 \right) becomes,
y=tan1(tan(π4x2))y = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)
y=(π4x2)\Rightarrow y = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
On differentiating,
dydx=12\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}
As there are no terms of xx in dydx\dfrac{{dy}}{{dx}}
\therefore at x=π6x = \dfrac{\pi }{6} also dydx=12\dfrac{{dy}}{{dx}} = - \dfrac{1}{2}
Hence, option (2)\left( 2 \right) is correct.