Solveeit Logo

Question

Mathematics Question on Differentiability

If y=tan1(cosx1+sinx),y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right), then dydx\frac{dy}{dx} is equal to

A

12\frac{1}{2}

B

22

C

2-2

D

12-\frac{1}{2}

Answer

12-\frac{1}{2}

Explanation

Solution

Given that, y=tan1(cosx1+sinx)y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right)
=tan1(cos2x2sin2x2sin2x2+cos2x2+2sinx2.cosx2)={{\tan }^{-1}}\left( \frac{{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}{{{\sin }^{2}}\frac{x}{2}+{{\cos }^{2}}\frac{x}{2}+2\sin \frac{x}{2}.\cos \frac{x}{2}} \right)
=tan1((cosx2sinx2)(cosx2+sinx2)(cosx2+sinx2)2)={{\tan }^{-1}}\left( \frac{\left( \cos \frac{x}{2}-\sin \frac{x}{2} \right)\left( \cos \frac{x}{2}+\sin \frac{x}{2} \right)}{{{\left( \cos \frac{x}{2}+\sin \frac{x}{2} \right)}^{2}}} \right)
=tan1(cosx2sinx2cosx2+sinx2)={{\tan }^{-1}}\left( \frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}} \right)
=tan1(1tanx21+tanx2)={{\tan }^{-1}}\left( \frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}} \right)
=tan1(tan(π4x2))={{\tan }^{-1}}\left( \tan \left( \frac{\pi }{4}-\frac{x}{2} \right) \right)
=π4x2=\frac{\pi }{4}-\frac{x}{2}
\therefore y=π4x2y=\frac{\pi }{4}-\frac{x}{2}
Differentiating it w.r.t., xx we get dydx=12\frac{dy}{dx}=-\frac{1}{2}